Unimodular lattices in dimensions 14 and 15 over the Eisenstein integers
HTML articles powered by AMS MathViewer
- by Kanat Abdukhalikov and Rudolf Scharlau;
- Math. Comp. 78 (2009), 387-403
- DOI: https://doi.org/10.1090/S0025-5718-08-02131-5
- Published electronically: May 16, 2008
- PDF | Request permission
Abstract:
All indecomposable unimodular hermitian lattices in dimensions 14 and 15 over the ring of integers in $\mathbb {Q}(\sqrt {-3})$ are determined. Precisely one lattice in dimension 14 and two lattices in dimension 15 have minimal norm 3.References
- K. S. Abdukhalikov, Invariant Hermitian lattices in the Steinberg module and their isometry groups, Comm. Algebra 25 (1997), no.Β 8, 2607β2626. MR 1459581, DOI 10.1080/00927879708826010
- Kanat Abdukhalikov, Unimodular Hermitian lattices in dimension 13, J. Algebra 272 (2004), no.Β 1, 186β190. MR 2029031, DOI 10.1016/j.jalgebra.2003.05.006
- Christine Bachoc, Applications of coding theory to the construction of modular lattices, J. Combin. Theory Ser. A 78 (1997), no.Β 1, 92β119. MR 1439633, DOI 10.1006/jcta.1996.2763
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no.Β 3-4, 235β265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- Arjeh M. Cohen, Finite complex reflection groups, Ann. Sci. Γcole Norm. Sup. (4) 9 (1976), no.Β 3, 379β436. MR 422448
- John H. Conway, Vera Pless, and Neil J. A. Sloane, Self-dual codes over $\textrm {GF}(3)$ and $\textrm {GF}(4)$ of length not exceeding $16$, IEEE Trans. Inform. Theory 25 (1979), no.Β 3, 312β322. MR 528009, DOI 10.1109/TIT.1979.1056047
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, $\Bbb {ATLAS}$ of finite groups, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups; With computational assistance from J. G. Thackray. MR 827219
- J. H. Conway and N. J. A. Sloane, Sphere packings, lattices and groups, 3rd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1999. With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR 1662447, DOI 10.1007/978-1-4757-6568-7
- Renaud Coulangeon, Minimal vectors in the second exterior power of a lattice, J. Algebra 194 (1997), no.Β 2, 467β476. MR 1467163, DOI 10.1006/jabr.1997.7039
- Walter Feit, Some lattices over $\textbf {Q}(\surd -3)$, J. Algebra 52 (1978), no.Β 1, 248β263. MR 498407, DOI 10.1016/0021-8693(78)90273-9
- Yoshiyuki Kitaoka, Arithmetic of quadratic forms, Cambridge Tracts in Mathematics, vol. 106, Cambridge University Press, Cambridge, 1993. MR 1245266, DOI 10.1017/CBO9780511666155
- Martin Kneser, Klassenzahlen definiter quadratischer Formen, Arch. Math. 8 (1957), 241β250 (German). MR 90606, DOI 10.1007/BF01898782
- Jacobus H. van Lint and F. Jessie MacWilliams, Generalized quadratic residue codes, IEEE Trans. Inform. Theory 24 (1978), no.Β 6, 730β737. MR 514352, DOI 10.1109/TIT.1978.1055965
- F. J. MacWilliams, A. M. Odlyzko, N. J. A. Sloane, and H. N. Ward, Self-dual codes over $\textrm {GF}(4)$, J. Combin. Theory Ser. A 25 (1978), no.Β 3, 288β318. MR 514624, DOI 10.1016/0097-3165(78)90021-3
- Gabriele Nebe, Finite subgroups of $\textrm {GL}_n(\mathbf Q)$ for $25\leq n\leq 31$, Comm. Algebra 24 (1996), no.Β 7, 2341β2397. MR 1390378, DOI 10.1080/00927879608825704
- W. Plesken and B. Souvignier, Computing isometries of lattices, J. Symbolic Comput. 24 (1997), no.Β 3-4, 327β334. Computational algebra and number theory (London, 1993). MR 1484483, DOI 10.1006/jsco.1996.0130
- H.-G. Quebbemann, Modular lattices in Euclidean spaces, J. Number Theory 54 (1995), no.Β 2, 190β202. MR 1354045, DOI 10.1006/jnth.1995.1111
- Udo Riese, On integral representations for $\textrm {SL}(2,q)$, J. Algebra 242 (2001), no.Β 2, 729β739. MR 1848968, DOI 10.1006/jabr.2001.8792
- Rudolf Scharlau and Rainer Schulze-Pillot, Extremal lattices, Algorithmic algebra and number theory (Heidelberg, 1997) Springer, Berlin, 1999, pp.Β 139β170. MR 1672117
- Rudolf Scharlau, Alexander Schiemann, and Rainer Schulze-Pillot, Theta series of modular, extremal, and Hermitian lattices, Integral quadratic forms and lattices (Seoul, 1998) Contemp. Math., vol. 249, Amer. Math. Soc., Providence, RI, 1999, pp.Β 221β233. MR 1732362, DOI 10.1090/conm/249/03760
- Alexander Schiemann, Classification of Hermitian forms with the neighbour method, J. Symbolic Comput. 26 (1998), no.Β 4, 487β508. MR 1646667, DOI 10.1006/jsco.1998.0225
- G. C. Shephard and J. A. Todd, Finite unitary reflection groups, Canad. J. Math. 6 (1954), 274β304. MR 59914, DOI 10.4153/cjm-1954-028-3
- Harold N. Ward, Quadratic residue codes and symplectic groups, J. Algebra 29 (1974), 150β171. MR 444290, DOI 10.1016/0021-8693(74)90120-3
Bibliographic Information
- Kanat Abdukhalikov
- Affiliation: Institute of Mathematics, 125 Pushkin Str, 050010, Kazakhstan
- Email: abdukhalikov@math.kz
- Rudolf Scharlau
- Affiliation: Department of Mathematics, University of Dortmund, 44221 Dortmund, Germany
- Email: Rudolf.Scharlau@math.uni-dortmund.de
- Received by editor(s): October 19, 2007
- Received by editor(s) in revised form: January 2, 2008
- Published electronically: May 16, 2008
- Additional Notes: The first author was supported by the Alexander von Humboldt Foundation.
- © Copyright 2008 American Mathematical Society
- Journal: Math. Comp. 78 (2009), 387-403
- MSC (2000): Primary 11H06, 11H56; Secondary 11E39, 11H71, 11F11
- DOI: https://doi.org/10.1090/S0025-5718-08-02131-5
- MathSciNet review: 2448712