Congruences for the Ramanujan function and generalized class numbers
HTML articles powered by AMS MathViewer
- by Bernhard Heim;
- Math. Comp. 78 (2009), 431-439
- DOI: https://doi.org/10.1090/S0025-5718-08-02136-4
- Published electronically: May 20, 2008
- PDF | Request permission
Abstract:
The Ramanujan $\tau$-function satisfies well-known congruences modulo the so-called exceptional prime numbers $2,3,5,7,23,691$. In this paper we prove new congruences related to the irregular primes $131$ and $593$, involving generalized class numbers. As an application we obtain distribution results. We obtain a new proof of the famous $691$ congruence and congruences of the related Rankin L-funtion.References
- Henri Cohen, Sums involving the values at negative integers of $L$-functions of quadratic characters, Math. Ann. 217 (1975), no. 3, 271–285. MR 382192, DOI 10.1007/BF01436180
- P. Deligne: Formes modulaires et representations l-adiques. Seminaire Bourbaki No. 355 (1969).
- Martin Eichler and Don Zagier, The theory of Jacobi forms, Progress in Mathematics, vol. 55, Birkhäuser Boston, Inc., Boston, MA, 1985. MR 781735, DOI 10.1007/978-1-4684-9162-3
- Paul B. Garrett, Decomposition of Eisenstein series: Rankin triple products, Ann. of Math. (2) 125 (1987), no. 2, 209–235. MR 881269, DOI 10.2307/1971310
- Paul B. Garrett, On the arithmetic of Siegel-Hilbert cuspforms: Petersson inner products and Fourier coefficients, Invent. Math. 107 (1992), no. 3, 453–481. MR 1150599, DOI 10.1007/BF01231899
- G. H. Hardy, Ramanujan. Twelve lectures on subjects suggested by his life and work, Cambridge University Press, Cambridge; The Macmillan Company, New York, 1940. MR 4860
- B. Heim: On the Spezialschar of Maass. Preprint, submitted 2006
- Hans Maass, Die Fourierkoeffizienten der Eisensteinreihen zweiten Grades, Mat.-Fys. Medd. Danske Vid. Selsk. 34 (1964), no. 7, 25 pp. (1964) (German). MR 171758
- Ken Ono, Congruences on the Fourier coefficients of modular forms on $\Gamma _0(N)$, The Rademacher legacy to mathematics (University Park, PA, 1992) Contemp. Math., vol. 166, Amer. Math. Soc., Providence, RI, 1994, pp. 93–105. MR 1284053, DOI 10.1090/conm/166/01643
- Jean-Pierre Serre, Abelian $l$-adic representations and elliptic curves, W. A. Benjamin, Inc., New York-Amsterdam, 1968. McGill University lecture notes written with the collaboration of Willem Kuyk and John Labute. MR 263823
- S. Ramanujan: On certain arithmetical functions. Trans. Cambridge Phil. Soc. 22 (1916), 159-184.
- J.-P. Serre: Congruences et formes modulaires (d’apres Swinnerton-Dyer). Seminaire Bourbaki No. 416 (1971).
- D. Zagier, Modular forms whose Fourier coefficients involve zeta-functions of quadratic fields, Modular functions of one variable, VI (Proc. Second Internat. Conf., Univ. Bonn, Bonn, 1976) Lecture Notes in Math., Vol. 627, Springer, Berlin-New York, 1977, pp. 105–169. MR 485703
Bibliographic Information
- Bernhard Heim
- Affiliation: Max-Planck Institut für Mathematik, Vivatsgasse 7, 53111 Bonn, Germany
- Email: heim@mpim-bonn.mpg.de
- Received by editor(s): November 13, 2007
- Received by editor(s) in revised form: January 9, 2008
- Published electronically: May 20, 2008
- © Copyright 2008 American Mathematical Society
- Journal: Math. Comp. 78 (2009), 431-439
- MSC (2000): Primary 11F33, 11F67, 11F80; Secondary 11Y70
- DOI: https://doi.org/10.1090/S0025-5718-08-02136-4
- MathSciNet review: 2448715