Overlapping additive Schwarz preconditioners for elliptic PDEs on the unit sphere
HTML articles powered by AMS MathViewer
- by Q. T. Le Gia, I. H. Sloan and T. Tran;
- Math. Comp. 78 (2009), 79-101
- DOI: https://doi.org/10.1090/S0025-5718-08-02150-9
- Published electronically: July 28, 2008
- PDF | Request permission
Abstract:
We present an overlapping domain decomposition technique for solving elliptic partial differential equations on the sphere. The approximate solution is constructed using shifts of a strictly positive definite kernel on the sphere. The condition number of the Schwarz operator depends on the way we decompose the scattered set into smaller subsets. The method is illustrated by numerical experiments on relatively large scattered point sets taken from MAGSAT satellite data.References
- R. K. Beatson, W. A. Light, and S. Billings, Fast solution of the radial basis function interpolation equations: domain decomposition methods, SIAM J. Sci. Comput. 22 (2000), no. 5, 1717–1740. MR 1813294, DOI 10.1137/S1064827599361771
- Béla Bollobás, Modern graph theory, Graduate Texts in Mathematics, vol. 184, Springer-Verlag, New York, 1998. MR 1633290, DOI 10.1007/978-1-4612-0619-4
- Debao Chen, Valdir A. Menegatto, and Xingping Sun, A necessary and sufficient condition for strictly positive definite functions on spheres, Proc. Amer. Math. Soc. 131 (2003), no. 9, 2733–2740. MR 1974330, DOI 10.1090/S0002-9939-03-06730-3
- Israel Halperin, The product of projection operators, Acta Sci. Math. (Szeged) 23 (1962), 96–99. MR 141978
- K. Hesse, Domain decomposition methods in multiscale geopotential determination from SST and SGG, Ph.D. thesis, University of Kaiserslautern, Germany, 2002.
- Simon Hubbert and Tanya M. Morton, A Duchon framework for the sphere, J. Approx. Theory 129 (2004), no. 1, 28–57. MR 2070179, DOI 10.1016/j.jat.2004.04.005
- Kurt Jetter, Joachim Stöckler, and Joseph D. Ward, Error estimates for scattered data interpolation on spheres, Math. Comp. 68 (1999), no. 226, 733–747. MR 1642746, DOI 10.1090/S0025-5718-99-01080-7
- Q. T. Le Gia, Galerkin approximation for elliptic PDEs on spheres, J. Approx. Theory 130 (2004), no. 2, 125–149. MR 2100699, DOI 10.1016/j.jat.2004.07.008
- Q. T. Le Gia, F. J. Narcowich, J. D. Ward, and H. Wendland, Continuous and discrete least-squares approximation by radial basis functions on spheres, J. Approx. Theory 143 (2006), no. 1, 124–133. MR 2271729, DOI 10.1016/j.jat.2006.03.007
- R. A. Langel, W. J. Hinze, The magnetic field of the earth’s lithosphere, the satellite perspective, Cambridge University Press, Cambridge, 1998.
- J. Levesley, Z. Luo, and X. Sun, Norm estimates of interpolation matrices and their inverses associated with strictly positive definite functions, Proc. Amer. Math. Soc. 127 (1999), no. 7, 2127–2134. MR 1476145, DOI 10.1090/S0002-9939-99-04683-3
- J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I, Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth. MR 350177
- Tanya M. Morton and Marian Neamtu, Error bounds for solving pseudodifferential equations on spheres by collocation with zonal kernels, J. Approx. Theory 114 (2002), no. 2, 242–268. MR 1883408, DOI 10.1006/jath.2001.3642
- Claus Müller, Spherical harmonics, Lecture Notes in Mathematics, vol. 17, Springer-Verlag, Berlin-New York, 1966. MR 199449
- Francis J. Narcowich and Joseph D. Ward, Scattered data interpolation on spheres: error estimates and locally supported basis functions, SIAM J. Math. Anal. 33 (2002), no. 6, 1393–1410. MR 1920637, DOI 10.1137/S0036141001395054
- Francis J. Narcowich, Joseph D. Ward, and Holger Wendland, Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting, Math. Comp. 74 (2005), no. 250, 743–763. MR 2114646, DOI 10.1090/S0025-5718-04-01708-9
- S. V. Nepomnyaschikh, Domain decomposition and Schwarz methods in a subspace for approximate solution of elliptic boundary value problems. Ph.D. thesis, Computing Center of the Siberian Branch of the USSR Academy of Sciences, Novosibirsk, USSR, 1986.
- John von Neumann, Functional Operators. II. The Geometry of Orthogonal Spaces, Annals of Mathematics Studies, No. 22, Princeton University Press, Princeton, NJ, 1950. MR 34514
- John G. Ratcliffe, Foundations of hyperbolic manifolds, Graduate Texts in Mathematics, vol. 149, Springer-Verlag, New York, 1994. MR 1299730, DOI 10.1007/978-1-4757-4013-4
- I. J. Schoenberg, Positive definite functions on spheres, Duke Math. J. 9 (1942), 96–108. MR 5922
- Kennan T. Smith, Donald C. Solmon, and Sheldon L. Wagner, Practical and mathematical aspects of the problem of reconstructing objects from radiographs, Bull. Amer. Math. Soc. 83 (1977), no. 6, 1227–1270. MR 490032, DOI 10.1090/S0002-9904-1977-14406-6
- Kennan T. Smith, Donald C. Solmon, and Sheldon L. Wagner, Practical and mathematical aspects of the problem of reconstructing objects from radiographs, Bull. Amer. Math. Soc. 83 (1977), no. 6, 1227–1270. MR 490032, DOI 10.1090/S0002-9904-1977-14406-6
- Andrea Toselli and Olof Widlund, Domain decomposition methods—algorithms and theory, Springer Series in Computational Mathematics, vol. 34, Springer-Verlag, Berlin, 2005. MR 2104179, DOI 10.1007/b137868
- Thanh Tran, Overlapping additive Schwarz preconditioners for boundary element methods, J. Integral Equations Appl. 12 (2000), no. 2, 177–207. MR 1771517, DOI 10.1216/jiea/1020282169
- Thanh Tran and Ernst P. Stephan, Additive Schwarz methods for the $h$-version boundary element method, Appl. Anal. 60 (1996), no. 1-2, 63–84. MR 1623443, DOI 10.1080/00036819608840418
- T. Tran and E. P. Stephan, An overlapping additive Schwarz preconditioner for boundary element approximations to the Laplace screen and Lamé crack problems, J. Numer. Math. 12 (2004), no. 4, 311–330. MR 2107935, DOI 10.1163/1569395042571265
- Holger Wendland, Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Adv. Comput. Math. 4 (1995), no. 4, 389–396. MR 1366510, DOI 10.1007/BF02123482
- Holger Wendland, Error estimates for interpolation by compactly supported radial basis functions of minimal degree, J. Approx. Theory 93 (1998), no. 2, 258–272. MR 1616781, DOI 10.1006/jath.1997.3137
- Holger Wendland, Scattered data approximation, Cambridge Monographs on Applied and Computational Mathematics, vol. 17, Cambridge University Press, Cambridge, 2005. MR 2131724
- Olof B. Widlund, Optimal iterative refinement methods, Domain decomposition methods (Los Angeles, CA, 1988) SIAM, Philadelphia, PA, 1989, pp. 114–125. MR 992008
- Yuan Xu and E. W. Cheney, Strictly positive definite functions on spheres, Proc. Amer. Math. Soc. 116 (1992), no. 4, 977–981. MR 1096214, DOI 10.1090/S0002-9939-1992-1096214-6
Bibliographic Information
- Q. T. Le Gia
- Affiliation: School of Mathematics and Statistics, The University of New South Wales, Sydney 2052, Australia
- Email: qlegia@maths.unsw.edu.au
- I. H. Sloan
- Affiliation: School of Mathematics and Statistics, The University of New South Wales, Sydney 2052, Australia
- MR Author ID: 163675
- ORCID: 0000-0003-3769-0538
- Email: I.Sloan@unsw.edu.au
- T. Tran
- Affiliation: School of Mathematics and Statistics, The University of New South Wales, Sydney 2052, Australia
- Email: Thanh.Tran@unsw.edu.au
- Received by editor(s): December 15, 2006
- Received by editor(s) in revised form: January 31, 2008
- Published electronically: July 28, 2008
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 78 (2009), 79-101
- MSC (2000): Primary 33F05, 65N55; Secondary 65N30
- DOI: https://doi.org/10.1090/S0025-5718-08-02150-9
- MathSciNet review: 2448698