## Evaluating Jacquet’s $\mathbf {\textrm {GL}(n)}$ Whittaker function

HTML articles powered by AMS MathViewer

- by Kevin A. Broughan PDF
- Math. Comp.
**78**(2009), 1061-1072 Request permission

## Abstract:

Algorithms for the explicit symbolic and numeric evaluation of Jacquet’s Whittaker function for the $GL(n,\mathbb {R})$ based generalized upper half-plane for $n\ge 2$, and an implementation for symbolic evaluation in the Mathematica package GL(n)pack, are described. This requires a comparison of the different definitions of Whittaker function which have appeared in the literature.## References

- Peter A. Becker,
*On the integration of products of Whittaker functions with respect to the second index*, J. Math. Phys.**45**(2004), no. 2, 761–773. MR**2029096**, DOI 10.1063/1.1634351 - Dorian Goldfeld,
*Automorphic forms and $L$-functions for the group $\textrm {GL}(n,\mathbf R)$*, Cambridge Studies in Advanced Mathematics, vol. 99, Cambridge University Press, Cambridge, 2006. With an appendix by Kevin A. Broughan. MR**2254662**, DOI 10.1017/CBO9780511542923 - Solomon Friedberg,
*Poincaré series for $\textrm {GL}(n)$: Fourier expansion, Kloosterman sums, and algebreo-geometric estimates*, Math. Z.**196**(1987), no. 2, 165–188. MR**910824**, DOI 10.1007/BF01163653 - Dorian Goldfeld,
*Automorphic forms and $L$-functions for the group $\textrm {GL}(n,\mathbf R)$*, Cambridge Studies in Advanced Mathematics, vol. 99, Cambridge University Press, Cambridge, 2006. With an appendix by Kevin A. Broughan. MR**2254662**, DOI 10.1017/CBO9780511542923 - I. S. Gradshteyn and I. M. Ryzhik,
*Table of integrals, series, and products*, 6th ed., Academic Press, Inc., San Diego, CA, 2000. Translated from the Russian; Translation edited and with a preface by Alan Jeffrey and Daniel Zwillinger. MR**1773820** - Taku Ishii,
*A remark on Whittaker functions on $\textrm {SL}(n,\Bbb R)$*, Ann. Inst. Fourier (Grenoble)**55**(2005), no. 2, 483–492. MR**2147897** - Hervé Jacquet,
*Fonctions de Whittaker associées aux groupes de Chevalley*, Bull. Soc. Math. France**95**(1967), 243–309 (French). MR**271275** - N. N. Lebedev,
*Special functions and their applications*, Dover Publications, Inc., New York, 1972. Revised edition, translated from the Russian and edited by Richard A. Silverman; Unabridged and corrected republication. MR**0350075** - Frank W. J. Olver,
*Asymptotics and special functions*, AKP Classics, A K Peters, Ltd., Wellesley, MA, 1997. Reprint of the 1974 original [Academic Press, New York; MR0435697 (55 #8655)]. MR**1429619** - I. I. Pjateckij-Šapiro,
*Euler subgroups*, Lie groups and their representations (Proc. Summer School, Bolyai János Math. Soc., Budapest, 1971) Halsted, New York, 1975, pp. 597–620. MR**0406935** - J. A. Shalika,
*The multiplicity one theorem for $\textrm {GL}_{n}$*, Ann. of Math. (2)**100**(1974), 171–193. MR**348047**, DOI 10.2307/1971071 - I. H. Sloan and T. R. Osborn,
*Multiple integration over bounded and unbounded regions*, J. Comput. Appl. Math.**17**(1987), no. 1-2, 181–196. MR**884269**, DOI 10.1016/0377-0427(87)90046-X - Eric Stade,
*On explicit integral formulas for $\textrm {GL}(n,\textbf {R})$-Whittaker functions*, Duke Math. J.**60**(1990), no. 2, 313–362. With an appendix by Daniel Bump, Solomon Friedberg and Jeffrey Hoffstein. MR**1047756**, DOI 10.1215/S0012-7094-90-06013-2 - Eric Stade,
*Mellin transforms of $\textrm {GL}(n,\Bbb R)$ Whittaker functions*, Amer. J. Math.**123**(2001), no. 1, 121–161. MR**1827280** - Eric Stade,
*Archimedean $L$-factors on $\textrm {GL}(n)\times \textrm {GL}(n)$ and generalized Barnes integrals*, Israel J. Math.**127**(2002), 201–219. MR**1900699**, DOI 10.1007/BF02784531 - A. H. Stroud,
*Approximate calculation of multiple integrals*, Prentice-Hall Series in Automatic Computation, Prentice-Hall, Inc., Englewood Cliffs, N.J., 1971. MR**0327006** - Audrey Terras,
*Harmonic analysis on symmetric spaces and applications. I*, Springer-Verlag, New York, 1985. MR**791406**, DOI 10.1007/978-1-4612-5128-6 - E. T. Whittaker and G. N. Watson,
*A course of modern analysis. An introduction to the general theory of infinite processes and of analytic functions: with an account of the principal transcendental functions*, Cambridge University Press, New York, 1962. Fourth edition. Reprinted. MR**0178117**

## Additional Information

**Kevin A. Broughan**- Affiliation: Department of Mathematics, University of Waikato, Hamilton, New Zealand
- Email: kab@waikato.ac.nz
- Received by editor(s): November 6, 2006
- Received by editor(s) in revised form: March 3, 2008
- Published electronically: August 28, 2008
- © Copyright 2008
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp.
**78**(2009), 1061-1072 - MSC (2000): Primary 33C15, 22E30, 11E57, 11E76
- DOI: https://doi.org/10.1090/S0025-5718-08-02158-3
- MathSciNet review: 2476570