Shimura curves of genus at most two
HTML articles powered by AMS MathViewer
- by John Voight;
- Math. Comp. 78 (2009), 1155-1172
- DOI: https://doi.org/10.1090/S0025-5718-08-02163-7
- Published electronically: August 14, 2008
- PDF | Request permission
Abstract:
We enumerate all Shimura curves $X^{\mathfrak {D}}_0(\mathfrak {N})$ of genus at most two: there are exactly 858 such curves, up to equivalence.References
- Montserrat Alsina and Pilar Bayer, Quaternion orders, quadratic forms, and Shimura curves, CRM Monograph Series, vol. 22, American Mathematical Society, Providence, RI, 2004. MR 2038122, DOI 10.1090/crmm/022
- Kok Seng Chua, Mong Lung Lang, and Yifan Yang, On Rademacher’s conjecture: congruence subgroups of genus zero of the modular group, J. Algebra 277 (2004), no. 1, 408–428. MR 2059637, DOI 10.1016/j.jalgebra.2004.02.025
- Henri Cohen, Advanced topics in computational number theory, Graduate Texts in Mathematics, vol. 193, Springer-Verlag, New York, 2000. MR 1728313, DOI 10.1007/978-1-4419-8489-0
- Henri Cohen, Francisco Diaz y Diaz, and Michel Olivier, Constructing complete tables of quartic fields using Kummer theory, Math. Comp. 72 (2003), no. 242, 941–951. MR 1954977, DOI 10.1090/S0025-5718-02-01452-7
- János A. Csirik, Joseph L. Wetherell, and Michael E. Zieve, On the genera of $X_0(N)$, to appear in J. Number Theory, math.NT/0006096.
- Fred Diamond and Jerry Shurman, A first course in modular forms, Graduate Texts in Mathematics, vol. 228, Springer-Verlag, New York, 2005. MR 2112196
- Tim Dokchitser, Computing special values of motivic $L$-functions, Experiment. Math. 13 (2004), no. 2, 137–149. MR 2068888
- Noam D. Elkies, Shimura curve computations, Algorithmic number theory (Portland, OR, 1998) Lecture Notes in Comput. Sci., vol. 1423, Springer, Berlin, 1998, pp. 1–47. MR 1726059, DOI 10.1007/BFb0054850
- H. Jacquet and R. P. Langlands, Automorphic forms on $\textrm {GL}(2)$, Lecture Notes in Mathematics, Vol. 114, Springer-Verlag, Berlin-New York, 1970. MR 401654
- Stefan Johansson, Genera of arithmetic Fuchsian groups, Acta Arith. 86 (1998), no. 2, 171–191. MR 1654474, DOI 10.4064/aa-86-2-171-191
- Svetlana Katok, Fuchsian groups, Chicago Lectures in Mathematics, University of Chicago Press, Chicago, IL, 1992. MR 1177168
- D. D. Long, C. Maclachlan, and A. W. Reid, Arithmetic Fuchsian groups of genus zero, Pure Appl. Math. Q. 2 (2006), no. 2, Special Issue: In honor of John H. Coates., 569–599. MR 2251482, DOI 10.4310/PAMQ.2006.v2.n2.a9
- Stéphane Louboutin, Computation of relative class numbers of CM-fields, Math. Comp. 66 (1997), no. 219, 1185–1194. MR 1422790, DOI 10.1090/S0025-5718-97-00863-6
- C. Maclachlan and G. Rosenberger, Two-generator arithmetic Fuchsian groups. II, Math. Proc. Cambridge Philos. Soc. 111 (1992), no. 1, 7–24. MR 1131474, DOI 10.1017/S0305004100075113
- Jacques Martinet, Petits discriminants des corps de nombres, Number theory days, 1980 (Exeter, 1980) NATO Adv. Study Inst. Ser. C: Math. Phys. Sci., vol. 91, Cambridge Univ. Press, Cambridge-New York, 1982, pp. 151–193 (French). MR 697261
- A. M. Odlyzko, Bounds for discriminants and related estimates for class numbers, regulators and zeros of zeta functions: a survey of recent results, Sém. Théor. Nombres Bordeaux (2) 2 (1990), no. 1, 119–141 (English, with French summary). MR 1061762
- Peter Sarnak, Notes on the generalized Ramanujan conjectures, Harmonic analysis, the trace formula, and Shimura varieties, Clay Math. Proc., vol. 4, Amer. Math. Soc., Providence, RI, 2005, pp. 659–685. MR 2192019
- Volker Schneider, Die elliptischen Fixpunkte zu Modulgruppen in Quaternionenschiefkörpern, Math. Ann. 217 (1975), no. 1, 29–45 (German). MR 384701, DOI 10.1007/BF01363238
- Atle Selberg, On the estimation of Fourier coefficients of modular forms, Proc. Sympos. Pure Math., Vol. VIII, Amer. Math. Soc., Providence, RI, 1965, pp. 1–15. MR 182610
- Hideo Shimizu, On zeta functions of quaternion algebras, Ann. of Math. (2) 81 (1965), 166–193. MR 171771, DOI 10.2307/1970389
- Mahoro Shimura, Defining equations of modular curves $X_0(N)$, Tokyo J. Math. 18 (1995), no. 2, 443–456. MR 1363479, DOI 10.3836/tjm/1270043475
- Kisao Takeuchi, Arithmetic Fuchsian groups with signature $(1;e)$, J. Math. Soc. Japan 35 (1983), no. 3, 381–407. MR 702765, DOI 10.2969/jmsj/03530381
- J. G. Thompson, A finiteness theorem for subgroups of $\textrm {PSL}(2,\,\textbf {R})$ which are commensurable with $\textrm {PSL}(2,\,\textbf {Z})$, The Santa Cruz Conference on Finite Groups (Univ. California, Santa Cruz, Calif., 1979) Proc. Sympos. Pure Math., vol. 37, Amer. Math. Soc., Providence, RI, 1980, pp. 533–555. MR 604632
- Marie-France Vignéras, Arithmétique des algèbres de quaternions, Lecture Notes in Mathematics, vol. 800, Springer, Berlin, 1980 (French). MR 580949
- Marie-France Vignéras, Quelques remarques sur la conjecture $\lambda _{1}\geq {1\over 4}$, Seminar on number theory, Paris 1981–82 (Paris, 1981/1982) Progr. Math., vol. 38, Birkhäuser Boston, Boston, MA, 1983, pp. 321–343 (French). MR 729180
- John Voight, Enumeration of totally real number fields of bounded root discriminant, Algorithmic number theory, eds. Alfred J. van der Poorten and Andreas Stein, Lecture Notes in Comp. Sci, vol. 5011, Springer, Berlin, 2008, 268–281.
- John Voight, Shimura curves of genus at most two, http://www.cems.uvm.edu/˜voight/shim-tables/ .
- John Voight, Computing fundamental domains for Fuchsian groups, submitted to J. Théorie de Nombres de Bordeaux.
- P. Zograf, A spectral proof of Rademacher’s conjecture for congruence subgroups of the modular group, J. Reine Angew. Math. 414 (1991), 113–116. MR 1092625, DOI 10.1515/crll.1991.414.113
Bibliographic Information
- John Voight
- Affiliation: Department of Mathematics and Statistics, 16 Colchester Avenue, University of Vermont, Burlington, Vermont 05401
- MR Author ID: 727424
- ORCID: 0000-0001-7494-8732
- Email: jvoight@gmail.com
- Received by editor(s): February 7, 2008
- Received by editor(s) in revised form: March 23, 2008
- Published electronically: August 14, 2008
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 78 (2009), 1155-1172
- MSC (2000): Primary 11G18, 11R52, 14G35
- DOI: https://doi.org/10.1090/S0025-5718-08-02163-7
- MathSciNet review: 2476577