Nonlinear nonoverlapping Schwarz waveform relaxation for semilinear wave propagation
HTML articles powered by AMS MathViewer
- by Laurence Halpern and Jérémie Szeftel;
- Math. Comp. 78 (2009), 865-889
- DOI: https://doi.org/10.1090/S0025-5718-08-02164-9
- Published electronically: July 1, 2008
- PDF | Request permission
Abstract:
We introduce a nonoverlapping variant of the Schwarz waveform relaxation algorithm for semilinear wave propagation in one dimension. Using the theory of absorbing boundary conditions, we derive a new nonlinear algorithm. We show that the algorithm is well-posed and we prove its convergence by energy estimates and a Galerkin method. We then introduce an explicit scheme. We prove the convergence of the discrete algorithm with suitable assumptions on the nonlinearity. We finally illustrate our analysis with numerical experiments.References
- Jean-Michel Bony, Calcul symbolique et propagation des singularités pour les équations aux dérivées partielles non linéaires, Ann. Sci. École Norm. Sup. (4) 14 (1981), no. 2, 209–246 (French). MR 631751
- Jean-Yves Chemin, Fluides parfaits incompressibles, Astérisque 230 (1995), 177 (French, with French summary). MR 1340046
- Björn Engquist and Andrew Majda, Radiation boundary conditions for acoustic and elastic wave calculations, Comm. Pure Appl. Math. 32 (1979), no. 3, 314–358. MR 517938, DOI 10.1002/cpa.3160320303
- Martin J. Gander and Christian Rohde, Overlapping Schwarz waveform relaxation for convection-dominated nonlinear conservation laws, SIAM J. Sci. Comput. 27 (2005), no. 2, 415–439. MR 2202227, DOI 10.1137/030601090
- Martin J. Gander and Laurence Halpern, Absorbing boundary conditions for the wave equation and parallel computing, Math. Comp. 74 (2005), no. 249, 153–176. MR 2085406, DOI 10.1090/S0025-5718-04-01635-7
- M. J. Gander, L. Halpern, and F. Nataf, Optimal convergence for overlapping and non-overlapping Schwarz waveform relaxation, Eleventh International Conference on Domain Decomposition Methods (London, 1998) DDM.org, Augsburg, 1999, pp. 27–36. MR 1827406
- Martin J. Gander, Laurence Halpern, and Frédéric Nataf, Optimal Schwarz waveform relaxation for the one dimensional wave equation, SIAM J. Numer. Anal. 41 (2003), no. 5, 1643–1681. MR 2035001, DOI 10.1137/S003614290139559X
- P.-L. Lions, On the Schwarz alternating method. I, First International Symposium on Domain Decomposition Methods for Partial Differential Equations (Paris, 1987) SIAM, Philadelphia, PA, 1988, pp. 1–42. MR 972510
- Monique Sablé-Tougeron, Régularité microlocale pour des problèmes aux limites non linéaires, Ann. Inst. Fourier (Grenoble) 36 (1986), no. 1, 39–82 (French). MR 840713, DOI 10.5802/aif.1037
- H. A. Schwarz, Über einen Grenzübergang durch alternierendes Verfahren, Vierteljahrsschrift der Naturforschenden Gesellschaft in Zürich 15 (1870), 272–286.
- Jérémie Szeftel, Absorbing boundary conditions for nonlinear scalar partial differential equations, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 29-32, 3760–3775. MR 2221773, DOI 10.1016/j.cma.2005.03.009
- Jérémie Szeftel, A nonlinear approach to absorbing boundary conditions for the semilinear wave equation, Math. Comp. 75 (2006), no. 254, 565–594. MR 2196981, DOI 10.1090/S0025-5718-06-01820-5
- G. B. Whitham, Linear and nonlinear waves, Pure and Applied Mathematics (New York), John Wiley & Sons, Inc., New York, 1999. Reprint of the 1974 original; A Wiley-Interscience Publication. MR 1699025, DOI 10.1002/9781118032954
Bibliographic Information
- Laurence Halpern
- Affiliation: LAGA, Institut Galilée, Université Paris XIII, 93430 Villetaneuse, France
- Email: halpern@math.univ-paris13.fr
- Jérémie Szeftel
- Affiliation: Department of Mathematics, Princeton University, Fine Hall, Washington Road, Princeton, New Jersey 08544-1000, and C.N.R.S., Mathématiques Appliquées de Bordeaux, Université Bordeaux 1, 351 cours de la Libération, 3 3405 Talence cedex France
- MR Author ID: 712495
- Email: jszeftel@math.princeton.edu
- Received by editor(s): January 31, 2007
- Received by editor(s) in revised form: March 27, 2008
- Published electronically: July 1, 2008
- Additional Notes: The second author was partially supported by NSF Grant DMS-0504720
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 78 (2009), 865-889
- MSC (2000): Primary 65F10, 65N22
- DOI: https://doi.org/10.1090/S0025-5718-08-02164-9
- MathSciNet review: 2476563