Ten new primitive binary trinomials
HTML articles powered by AMS MathViewer
- by Richard P. Brent and Paul Zimmermann;
- Math. Comp. 78 (2009), 1197-1199
- DOI: https://doi.org/10.1090/S0025-5718-08-02170-4
- Published electronically: August 1, 2008
- PDF | Request permission
Abstract:
We exhibit ten new primitive trinomials over GF(2) of record degrees $24 036 583$, $25 964 951$, $30 402 457$, and $32 582 657$. This completes the search for the currently known Mersenne prime exponents.References
- Richard P. Brent, Search for primitive trinomials (mod 2), http://wwwmaths.anu.edu.au/~brent/trinom.html, 2008.
- Richard Brent, Pierrick Gaudry, Emmanuel Thomé, and Paul Zimmermann, Faster multiplication in $\textrm {GF}(2)[x]$, Proc. of the 8th International Symposium on Algorithmic Number Theory (ANTS VIII), Lecture Notes in Computer Science 5011, Springer-Verlag, 2008, 153–166.
- Richard P. Brent, Samuli Larvala, and Paul Zimmermann, A fast algorithm for testing reducibility of trinomials mod 2 and some new primitive trinomials of degree 3021377, Math. Comp. 72 (2003), no. 243, 1443–1452. MR 1972745, DOI 10.1090/S0025-5718-02-01478-3
- Richard P. Brent, Samuli Larvala, and Paul Zimmermann, A primitive trinomial of degree 6972593, Math. Comp. 74 (2005), no. 250, 1001–1002. MR 2114660, DOI 10.1090/S0025-5718-04-01673-4
- Richard P. Brent and Paul Zimmermann, A multi-level blocking distinct degree factorization algorithm (extended abstract), Proceedings of the 8th International Conference on Finite Fields and Applications (Fq8) (Melbourne, Australia), 2007.
- —, A multi-level blocking distinct degree factorization algorithm, Contemporary Mathematics, special issue, to appear. Also available as arXiv:0710.4410.
- The Great Internet Mersenne Prime Search, http://mersenne.org/.
- J. R. Heringa, H. W. J. Blöte, and A. Compagner, New primitive trinomials of Mersenne-exponent degrees for random-number generation, Internat. J. Modern Phys. C 3 (1992), no. 3, 561–564. MR 1169571, DOI 10.1142/S0129183192000361
- Toshihiro Kumada, Hannes Leeb, Yoshiharu Kurita, and Makoto Matsumoto, New primitive $t$-nomials $(t=3,5)$ over $\rm GF(2)$ whose degree is a Mersenne exponent, Math. Comp. 69 (2000), no. 230, 811–814. MR 1665959, DOI 10.1090/S0025-5718-99-01168-0
- Yoshiharu Kurita and Makoto Matsumoto, Primitive $t$-nomials $(t=3,5)$ over $\textrm {GF}(2)$ whose degree is a Mersenne exponent $\le 44497$, Math. Comp. 56 (1991), no. 194, 817–821. MR 1068813, DOI 10.1090/S0025-5718-1991-1068813-6
- Victor Shoup, NTL: A library for doing number theory, http://www.shoup.net/ntl/, 2007.
- Richard G. Swan, Factorization of polynomials over finite fields, Pacific J. Math. 12 (1962), 1099–1106. MR 144891
Bibliographic Information
- Richard P. Brent
- Affiliation: Australian National University, Canberra, Australia
- Email: trinomials@rpbrent.com
- Paul Zimmermann
- Affiliation: INRIA Nancy, Grand Est, Villers-lès-Nancy, France
- MR Author ID: 273776
- Email: Paul.Zimmermann@loria.fr
- Received by editor(s): April 15, 2008
- Published electronically: August 1, 2008
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 78 (2009), 1197-1199
- MSC (2000): Primary 11B83, 11Y16; Secondary 11-04, 11T06, 11Y55, 12-04
- DOI: https://doi.org/10.1090/S0025-5718-08-02170-4
- MathSciNet review: 2476580