Unconditional stability of explicit exponential Runge-Kutta methods for semi-linear ordinary differential equations
HTML articles powered by AMS MathViewer
- by S. Maset and M. Zennaro;
- Math. Comp. 78 (2009), 957-967
- DOI: https://doi.org/10.1090/S0025-5718-08-02171-6
- Published electronically: August 18, 2008
- PDF | Request permission
Abstract:
In this paper we define unconditional stability properties of exponential Runge-Kutta methods when they are applied to semi-linear systems of ordinary differential equations characterized by a stiff linear part and a non-stiff non-linear part. These properties are related to a class of systems and to a specific norm. We give sufficient conditions in order that an explicit method satisfies such properties. On the basis of such conditions we analyze some of the popular methods.References
- Uri M. Ascher, Steven J. Ruuth, and Raymond J. Spiteri, Implicit-explicit Runge-Kutta methods for time-dependent partial differential equations, Appl. Numer. Math. 25 (1997), no. 2-3, 151–167. Special issue on time integration (Amsterdam, 1996). MR 1485812, DOI 10.1016/S0168-9274(97)00056-1
- Uri M. Ascher, Steven J. Ruuth, and Brian T. R. Wetton, Implicit-explicit methods for time-dependent partial differential equations, SIAM J. Numer. Anal. 32 (1995), no. 3, 797–823. MR 1335656, DOI 10.1137/0732037
- H. Berland and B. Skaflestad. Solving the non-linear Schrondinger equation using exponential integrators. Technical Report 05/04. The Norwegian Institute of Science and Technology, 2004.
- H. Berland and W. Wright. EXPINT—A MATLAB package for exponential integrators. Technical Report 04/05. The Norwegian Institute of Science and Technology, 2005.
- Gregory Beylkin, James M. Keiser, and Lev Vozovoi, A new class of time discretization schemes for the solution of nonlinear PDEs, J. Comput. Phys. 147 (1998), no. 2, 362–387. MR 1663563, DOI 10.1006/jcph.1998.6093
- E. Celledoni, A. Marthinsen and B. Owren. Commutator-free Lie group methods. Future Generation Computer Systems, 19: 341-352. 2003.
- S. M. Cox and P. C. Matthews, Exponential time differencing for stiff systems, J. Comput. Phys. 176 (2002), no. 2, 430–455. MR 1894772, DOI 10.1006/jcph.2002.6995
- A. Friedli, Verallgemeinerte Runge-Kutta Verfahren zur Lösung steifer Differentialgleichungssysteme, Numerical treatment of differential equations (Proc. Conf., Math. Forschungsinst., Oberwolfach, 1976) Lecture Notes in Math., Vol. 631, Springer, Berlin-New York, 1978, pp. 35–50 (German). MR 494950
- Marlis Hochbruck and Christian Lubich, On Krylov subspace approximations to the matrix exponential operator, SIAM J. Numer. Anal. 34 (1997), no. 5, 1911–1925. MR 1472203, DOI 10.1137/S0036142995280572
- Marlis Hochbruck and Christian Lubich, Exponential integrators for quantum-classical molecular dynamics, BIT 39 (1999), no. 4, 620–645. MR 1735097, DOI 10.1023/A:1022335122807
- Marlis Hochbruck and Christian Lubich, A Gautschi-type method for oscillatory second-order differential equations, Numer. Math. 83 (1999), no. 3, 403–426. MR 1715573, DOI 10.1007/s002110050456
- Marlis Hochbruck, Christian Lubich, and Hubert Selhofer, Exponential integrators for large systems of differential equations, SIAM J. Sci. Comput. 19 (1998), no. 5, 1552–1574. MR 1618808, DOI 10.1137/S1064827595295337
- Marlis Hochbruck and Alexander Ostermann, Exponential Runge-Kutta methods for parabolic problems, Appl. Numer. Math. 53 (2005), no. 2-4, 323–339. MR 2128529, DOI 10.1016/j.apnum.2004.08.005
- Marlis Hochbruck and Alexander Ostermann, Explicit exponential Runge-Kutta methods for semilinear parabolic problems, SIAM J. Numer. Anal. 43 (2005), no. 3, 1069–1090. MR 2177796, DOI 10.1137/040611434
- Willem Hundsdorfer and Jan Verwer, Numerical solution of time-dependent advection-diffusion-reaction equations, Springer Series in Computational Mathematics, vol. 33, Springer-Verlag, Berlin, 2003. MR 2002152, DOI 10.1007/978-3-662-09017-6
- Aly-Khan Kassam and Lloyd N. Trefethen, Fourth-order time-stepping for stiff PDEs, SIAM J. Sci. Comput. 26 (2005), no. 4, 1214–1233. MR 2143482, DOI 10.1137/S1064827502410633
- J. F. B. M. Kraaijevanger, Contractivity of Runge-Kutta methods, BIT 31 (1991), no. 3, 482–528. MR 1127488, DOI 10.1007/BF01933264
- S. Krogstad, Generalized integrating factor methods for stiff PDEs, J. Comput. Phys. 203 (2005), no. 1, 72–88. MR 2104391, DOI 10.1016/j.jcp.2004.08.006
- J. Douglas Lawson, Generalized Runge-Kutta processes for stable systems with large Lipschitz constants, SIAM J. Numer. Anal. 4 (1967), 372–380. MR 221759, DOI 10.1137/0704033
- Y. Maday, Anthony T. Patera, and Einar M. Rønquist, An operator-integration-factor splitting method for time-dependent problems: application to incompressible fluid flow, J. Sci. Comput. 5 (1990), no. 4, 263–292. MR 1105250, DOI 10.1007/BF01063118
- B. Minchev and W. Wright. A review of exponential integrators for first order semi-linear problems. Preprint Numerics 2/2005. Norwegian University of Science and Technology, Trondheim Norway.
- David R. Mott, Elaine S. Oran, and Bram van Leer, A quasi-steady-state solver for the stiff ordinary differential equations of reaction kinetics, J. Comput. Phys. 164 (2000), no. 2, 407–428. MR 1792518, DOI 10.1006/jcph.2000.6605
- Hans Munthe-Kaas, High order Runge-Kutta methods on manifolds, Proceedings of the NSF/CBMS Regional Conference on Numerical Analysis of Hamiltonian Differential Equations (Golden, CO, 1997), 1999, pp. 115–127. MR 1662814, DOI 10.1016/S0168-9274(98)00030-0
- Torsten Ström, On logarithmic norms, SIAM J. Numer. Anal. 12 (1975), no. 5, 741–753. MR 408227, DOI 10.1137/0712055
- K. Strehmel and R. Weiner, $B$-convergence results for linearly implicit one step methods, BIT 27 (1987), no. 2, 264–281. MR 894127, DOI 10.1007/BF01934189
- J. G. Verwer and M. van Loon, An evaluation of explicit pseudo-steady-state approximation schemes for stiff ODE systems from chemical kinetics, J. Comput. Phys. 113 (1994), no. 2, 347–352. MR 1284858, DOI 10.1006/jcph.1994.1141
Bibliographic Information
- S. Maset
- Affiliation: Dipartimento di Matematica e Informatica, Università di Trieste, Trieste, Italy
- MR Author ID: 658579
- M. Zennaro
- Affiliation: Dipartimento di Matematica e Informatica, Università di Trieste, Trieste, Italy
- Received by editor(s): October 25, 2006
- Received by editor(s) in revised form: April 14, 2008
- Published electronically: August 18, 2008
- Additional Notes: This work was supported by the Italian MIUR and INdAM-GNCS.
- © Copyright 2008
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 78 (2009), 957-967
- MSC (2000): Primary 65L20
- DOI: https://doi.org/10.1090/S0025-5718-08-02171-6
- MathSciNet review: 2476566