A-priori analysis and the finite element method for a class of degenerate elliptic equations
HTML articles powered by AMS MathViewer
- by Hengguang Li;
- Math. Comp. 78 (2009), 713-737
- DOI: https://doi.org/10.1090/S0025-5718-08-02179-0
- Published electronically: September 2, 2008
- PDF | Request permission
Abstract:
Consider the degenerate elliptic operator $\mathcal {L_\delta } := -\partial ^2_x-\frac {\delta ^2}{x^2}\partial ^2_y$ on $\Omega := (0, 1)\times (0, l)$, for $\delta >0, l>0$. We prove well-posedness and regularity results for the degenerate elliptic equation $\mathcal {L_\delta } u=f$ in $\Omega$, $u|_{\partial \Omega }=0$ using weighted Sobolev spaces $\mathcal {K}^m_a$. In particular, by a proper choice of the parameters in the weighted Sobolev spaces $\mathcal {K}^m_a$, we establish the existence and uniqueness of the solution. In addition, we show that there is no loss of $\mathcal {K}^m_a$-regularity for the solution of the equation. We then provide an explicit construction of a sequence of finite dimensional subspaces $V_n$ for the finite element method, such that the optimal convergence rate is attained for the finite element solution $u_n\in V_n$, i.e., $||u-u_n||_{H^1(\Omega )}\leq C\textrm {{dim}}(V_n)^{-\frac {m}{2}}||f||_{H^{m-1}(\Omega )}$ with $C$ independent of $f$ and $n$.References
- Robert A. Adams, Sobolev spaces, Pure and Applied Mathematics, Vol. 65, Academic Press [Harcourt Brace Jovanovich, Publishers], New York-London, 1975. MR 450957
- Bernd Ammann, Alexandru D. Ionescu, and Victor Nistor, Sobolev spaces on Lie manifolds and regularity for polyhedral domains, Doc. Math. 11 (2006), 161–206. MR 2262931
- Bernd Ammann and Victor Nistor, Weighted Sobolev spaces and regularity for polyhedral domains, Comput. Methods Appl. Mech. Engrg. 196 (2007), no. 37-40, 3650–3659. MR 2339991, DOI 10.1016/j.cma.2006.10.022
- Thomas Apel, Anisotropic finite elements: local estimates and applications, Advances in Numerical Mathematics, B. G. Teubner, Stuttgart, 1999. MR 1716824
- Thomas Apel, Serge Nicaise, and Joachim Schöberl, Finite element methods with anisotropic meshes near edges, Finite element methods (Jyväskylä, 2000) GAKUTO Internat. Ser. Math. Sci. Appl., vol. 15, Gakk\B{o}tosho, Tokyo, 2001, pp. 1–8. MR 1896262
- Thomas Apel, Anna-Margarete Sändig, and John R. Whiteman, Graded mesh refinement and error estimates for finite element solutions of elliptic boundary value problems in non-smooth domains, Math. Methods Appl. Sci. 19 (1996), no. 1, 63–85. MR 1365264, DOI 10.1002/(SICI)1099-1476(19960110)19:1<63::AID-MMA764>3.0.CO;2-S
- Douglas N. Arnold, L. Ridgway Scott, and Michael Vogelius, Regular inversion of the divergence operator with Dirichlet boundary conditions on a polygon, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 15 (1988), no. 2, 169–192 (1989). MR 1007396
- Ivo Babuška, Finite element method for domains with corners, Computing (Arch. Elektron. Rechnen) 6 (1970), 264–273 (English, with German summary). MR 293858, DOI 10.1007/bf02238811
- A. K. Aziz (ed.), The mathematical foundations of the finite element method with applications to partial differential equations, Academic Press, New York-London, 1972. MR 347104
- I. Babuška and A. K. Aziz, On the angle condition in the finite element method, SIAM J. Numer. Anal. 13 (1976), no. 2, 214–226. MR 455462, DOI 10.1137/0713021
- I. Babuška, R. B. Kellogg, and J. Pitkäranta, Direct and inverse error estimates for finite elements with mesh refinements, Numer. Math. 33 (1979), no. 4, 447–471. MR 553353, DOI 10.1007/BF01399326
- Ivo Babuška and Victor Nistor, Interior numerical approximation of boundary value problems with a distributional data, Numer. Methods Partial Differential Equations 22 (2006), no. 1, 79–113. MR 2185526, DOI 10.1002/num.20086
- Constantin Bacuta and James H. Bramble, Regularity estimates for solutions of the equations of linear elasticity in convex plane polygonal domains, Z. Angew. Math. Phys. 54 (2003), no. 5, 874–878. Special issue dedicated to Lawrence E. Payne. MR 2019187, DOI 10.1007/s00033-003-3211-4
- C. Băcuţă, V. Nistor, and L. T. Zikatanov, Regularity and well posedness for the Laplace operator on polyhedral domains, IMA Preprint, 2004.
- Constantin Băcuţă, Victor Nistor, and Ludmil T. Zikatanov, Improving the rate of convergence of ‘high order finite elements’ on polygons and domains with cusps, Numer. Math. 100 (2005), no. 2, 165–184. MR 2135780, DOI 10.1007/s00211-005-0588-3
- Constantin Bacuta, Victor Nistor, and Ludmil T. Zikatanov, Improving the rate of convergence of high-order finite elements on polyhedra. I. A priori estimates, Numer. Funct. Anal. Optim. 26 (2005), no. 6, 613–639. MR 2187917, DOI 10.1080/01630560500377295
- K. Kh. Boĭmatov, Estimates for solutions of strongly degenerate elliptic equations in weighted Sobolev spaces, Tr. Semin. im. I. G. Petrovskogo 21 (2001), 194–239, 341 (Russian, with Russian summary); English transl., J. Math. Sci. (New York) 108 (2002), no. 4, 543–573. MR 1875964, DOI 10.1023/A:1013110406673
- James H. Bramble and Xuejun Zhang, Uniform convergence of the multigrid $V$-cycle for an anisotropic problem, Math. Comp. 70 (2001), no. 234, 453–470. MR 1709148, DOI 10.1090/S0025-5718-00-01222-9
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 1994. MR 1278258, DOI 10.1007/978-1-4757-4338-8
- Zhiqiang Cai and Seokchan Kim, A finite element method using singular functions for the Poisson equation: corner singularities, SIAM J. Numer. Anal. 39 (2001), no. 1, 286–299. MR 1860726, DOI 10.1137/S0036142999355945
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 520174
- Martin Costabel, Boundary integral operators on curved polygons, Ann. Mat. Pura Appl. (4) 133 (1983), 305–326. MR 725031, DOI 10.1007/BF01766023
- Monique Dauge, Elliptic boundary value problems on corner domains, Lecture Notes in Mathematics, vol. 1341, Springer-Verlag, Berlin, 1988. Smoothness and asymptotics of solutions. MR 961439, DOI 10.1007/BFb0086682
- Stephan Dahlke and Ronald A. DeVore, Besov regularity for elliptic boundary value problems, Comm. Partial Differential Equations 22 (1997), no. 1-2, 1–16. MR 1434135, DOI 10.1080/03605309708821252
- Ronald A. DeVore and George G. Lorentz, Constructive approximation, Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 303, Springer-Verlag, Berlin, 1993. MR 1261635
- Lawrence C. Evans, Partial differential equations, Graduate Studies in Mathematics, vol. 19, American Mathematical Society, Providence, RI, 1998. MR 1625845, DOI 10.1090/gsm/019
- Veronica Felli and Matthias Schneider, A note on regularity of solutions to degenerate elliptic equations of Caffarelli-Kohn-Nirenberg type, Adv. Nonlinear Stud. 3 (2003), no. 4, 431–443. MR 2017240, DOI 10.1515/ans-2003-0402
- Donald A. French, The finite element method for a degenerate elliptic equation, SIAM J. Numer. Anal. 24 (1987), no. 4, 788–815. MR 899704, DOI 10.1137/0724051
- Jayadeep Gopalakrishnan and Joseph E. Pasciak, The convergence of V-cycle multigrid algorithms for axisymmetric Laplace and Maxwell equations, Math. Comp. 75 (2006), no. 256, 1697–1719. MR 2240631, DOI 10.1090/S0025-5718-06-01884-9
- P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 775683
- P. Grisvard, Singularities in boundary value problems, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], vol. 22, Masson, Paris; Springer-Verlag, Berlin, 1992. MR 1173209
- W. B. Gu, C. Y. Wang, and B. Y. Liaw, Micro-macroscopic coupled modeling of batteries and fuel cells: Part 2. application to nickel-cadmium and nickel-metal hybrid cells, J. Electrochem. Soc. (1998).
- R. B. Kellogg, Notes on piecewise smooth elliptic boundary value problems, 2003.
- V. A. Kondrat′ev, Boundary value problems for elliptic equations in domains with conical or angular points, Trudy Moskov. Mat. Obšč. 16 (1967), 209–292 (Russian). MR 226187
- V. A. Kozlov, V. G. Maz′ya, and J. Rossmann, Elliptic boundary value problems in domains with point singularities, Mathematical Surveys and Monographs, vol. 52, American Mathematical Society, Providence, RI, 1997. MR 1469972, DOI 10.1090/surv/052
- V. A. Kozlov, V. G. Maz′ya, and J. Rossmann, Spectral problems associated with corner singularities of solutions to elliptic equations, Mathematical Surveys and Monographs, vol. 85, American Mathematical Society, Providence, RI, 2001. MR 1788991, DOI 10.1090/surv/085
- Michel Langlais, On the continuous solutions of a degenerate elliptic equation, Proc. London Math. Soc. (3) 50 (1985), no. 2, 282–298. MR 772714, DOI 10.1112/plms/s3-50.2.282
- Jeff E. Lewis and Cesare Parenti, Pseudodifferential operators of Mellin type, Comm. Partial Differential Equations 8 (1983), no. 5, 477–544. MR 695401, DOI 10.1080/03605308308820276
- H. Li, A. Mazzucato, and V. Nistor, Analysis of the finite element method for transmission/ mixed boundary value problems on general polygonal domains, submitted (2008).
- H. Li and V. Nistor, Analysis of a modified Schrödinger operator in 2D: regularity, index, and FEM, J. Comput. Appl. Math., 2008, DOI:10.1016/j.cam.2008.05.009.
- J. M. Melenk and I. Babuška, The partition of unity finite element method: basic theory and applications, Comput. Methods Appl. Mech. Engrg. 139 (1996), no. 1-4, 289–314. MR 1426012, DOI 10.1016/S0045-7825(96)01087-0
- Sergey A. Nazarov and Boris A. Plamenevsky, Elliptic problems in domains with piecewise smooth boundaries, De Gruyter Expositions in Mathematics, vol. 13, Walter de Gruyter & Co., Berlin, 1994. MR 1283387, DOI 10.1515/9783110848915.525
- Shmuel Rippa, Long and thin triangles can be good for linear interpolation, SIAM J. Numer. Anal. 29 (1992), no. 1, 257–270. MR 1149097, DOI 10.1137/0729017
- A. H. Schatz and L. B. Wahlbin, Maximum norm estimates in the finite element method on plane polygonal domains. I, Math. Comp. 32 (1978), no. 141, 73–109. MR 502065, DOI 10.1090/S0025-5718-1978-0502065-1
- A. H. Schatz and L. B. Wahlbin, Maximum norm estimates in the finite element method on plane polygonal domains. I, Math. Comp. 32 (1978), no. 141, 73–109. MR 502065, DOI 10.1090/S0025-5718-1978-0502065-1
- Michael E. Taylor, Partial differential equations, Texts in Applied Mathematics, vol. 23, Springer-Verlag, New York, 1996. Basic theory. MR 1395147, DOI 10.1007/978-1-4684-9320-7
- Lars B. Wahlbin, On the sharpness of certain local estimates for $\r H{}^{1}$ projections into finite element spaces: influence of a re-entrant corner, Math. Comp. 42 (1984), no. 165, 1–8. MR 725981, DOI 10.1090/S0025-5718-1984-0725981-7
- C. Y. Wang, W. B. Gu, and B. Y. Liaw, Micro-macroscopic coupled modeling of batteries and fuel cells: Part 1. model development, J. Electrochem. Soc. (1998).
- Jinchao Xu, Iterative methods by space decomposition and subspace correction, SIAM Rev. 34 (1992), no. 4, 581–613. MR 1193013, DOI 10.1137/1034116
- Kôsaku Yosida, Functional analysis, 5th ed., Grundlehren der Mathematischen Wissenschaften, Band 123, Springer-Verlag, Berlin-New York, 1978. MR 500055
Bibliographic Information
- Hengguang Li
- Affiliation: Department of Mathematics, Pennsylvania State University, University Park, Pennsylvania 16802
- Address at time of publication: Department of Mathematics, Syracuse University, Syracuse, New York 13244
- MR Author ID: 835341
- Email: li_h@math.psu.edu
- Received by editor(s): October 18, 2006
- Received by editor(s) in revised form: May 2, 2008
- Published electronically: September 2, 2008
- Additional Notes: H. Li was supported in part by NSF Grant DMS 0713743
- © Copyright 2008 American Mathematical Society
- Journal: Math. Comp. 78 (2009), 713-737
- MSC (2000): Primary 35J70, 41A25, 41A50, 65N12, 65N15, 65N30, 65N50
- DOI: https://doi.org/10.1090/S0025-5718-08-02179-0
- MathSciNet review: 2476557