The complexity of class polynomial computation via floating point approximations
HTML articles powered by AMS MathViewer
- by Andreas Enge;
- Math. Comp. 78 (2009), 1089-1107
- DOI: https://doi.org/10.1090/S0025-5718-08-02200-X
- Published electronically: November 17, 2008
Abstract:
We analyse the complexity of computing class polynomials, that are an important ingredient for CM constructions of elliptic curves, via complex floating point approximations of their roots. The heart of the algorithm is the evaluation of modular functions in several arguments. The fastest one of the presented approaches uses a technique devised by Dupont to evaluate modular functions by Newton iterations on an expression involving the arithmetic-geometric mean. Under the heuristic assumption, justified by experiments, that the correctness of the result is not perturbed by rounding errors, the algorithm runs in time \[ O \left ( \sqrt {|D|} \log ^3 |D| M \left ( \sqrt {|D|} \log ^2 |D| \right ) \right ) \subseteq O \left (|D| \log ^{6 + \varepsilon } |D| \right ) \subseteq O \left ( h^{2 + \varepsilon } \right ) \] for any $\varepsilon > 0$, where $D$ is the CM discriminant, $h$ is the degree of the class polynomial and $M (n)$ is the time needed to multiply two $n$-bit numbers. Up to logarithmic factors, this running time matches the size of the constructed polynomials. The estimate also relies on a new result concerning the complexity of enumerating the class group of an imaginary quadratic order and on a rigorously proven upper bound for the height of class polynomials.References
- Amod Agashe, Kristin Lauter, and Ramarathnam Venkatesan, Constructing elliptic curves with a known number of points over a prime field, High primes and misdemeanours: lectures in honour of the 60th birthday of Hugh Cowie Williams, Fields Inst. Commun., vol. 41, Amer. Math. Soc., Providence, RI, 2004, pp. 1–17. MR 2075643
- A. O. L. Atkin and D. J. Bernstein, Prime sieves using binary quadratic forms, Math. Comp. 73 (2004), no. 246, 1023–1030. MR 2031423, DOI 10.1090/S0025-5718-03-01501-1
- A. O. L. Atkin and F. Morain, Elliptic curves and primality proving, Math. Comp. 61 (1993), no. 203, 29–68. MR 1199989, DOI 10.1090/S0025-5718-1993-1199989-X
- Eric Bach, Explicit bounds for primality testing and related problems, Math. Comp. 55 (1990), no. 191, 355–380. MR 1023756, DOI 10.1090/S0025-5718-1990-1023756-8
- Paulo S. L. M. Barreto, Ben Lynn, and Michael Scott, Constructing elliptic curves with prescribed embedding degrees, Security in Communication Networks — Third International Conference, SCN 2002, Amalfi, Italy, September 2002 (Berlin) (Stelvio Cimato, Clemente Galdi, and Giuseppe Persiano, eds.), Lecture Notes in Computer Science, vol. 2576, Springer-Verlag, 2003, pp. 257–267.
- Richard P. Brent, Fast multiple-precision evaluation of elementary functions, J. Assoc. Comput. Mach. 23 (1976), no. 2, 242–251. MR 395314, DOI 10.1145/321941.321944
- Friederike Brezing and Annegret Weng, Elliptic curves suitable for pairing based cryptography, Des. Codes Cryptogr. 37 (2005), no. 1, 133–141. MR 2165045, DOI 10.1007/s10623-004-3808-4
- Nicolas Brisebarre and Georges Philibert, Effective lower and upper bounds for the Fourier coefficients of powers of the modular invariant $j$, J. Ramanujan Math. Soc. 20 (2005), no. 4, 255–282. MR 2193216
- Reinier Bröker, Constructing elliptic curves of prescribed order, Proefschrift, Universiteit Leiden, 2006.
- Reinier Bröker and Peter Stevenhagen, Elliptic curves with a given number of points, Algorithmic number theory, Lecture Notes in Comput. Sci., vol. 3076, Springer, Berlin, 2004, pp. 117–131. MR 2137348, DOI 10.1007/978-3-540-24847-7_{8}
- Michele Cipolla, Un metodo per la risoluzione della congruenza di secondo grado, Napoli Rend. 9 (1903), 153–163.
- Henri Cohen, A course in computational algebraic number theory, Graduate Texts in Mathematics, vol. 138, Springer-Verlag, Berlin, 1993. MR 1228206, DOI 10.1007/978-3-662-02945-9
- Jean-Marc Couveignes and Thierry Henocq, Action of modular correspondences around CM points, Algorithmic number theory (Sydney, 2002) Lecture Notes in Comput. Sci., vol. 2369, Springer, Berlin, 2002, pp. 234–243. MR 2041087, DOI 10.1007/3-540-45455-1_{1}9
- David A. Cox, Primes of the form $x^2 + ny^2$, A Wiley-Interscience Publication, John Wiley & Sons, Inc., New York, 1989. Fermat, class field theory and complex multiplication. MR 1028322
- R. Dedekind, Erläuterungen zu den vorstehenden Fragmenten, Bernhard Riemann’s gesammelte mathematische Werke und wissenschaftlicher Nachlaß (R. Dedekind and H. Weber, eds.), Teubner, Leipzig, 1876, pp. 438–447.
- Max Deuring, Die Typen der Multiplikatorenringe elliptischer Funktionenkörper, Abh. Math. Sem. Hansischen Univ. 14 (1941), 197–272 (German). MR 5125, DOI 10.1007/BF02940746
- M. Deuring, Die Klassenkörper der komplexen Multiplikation, Enzyklopädie der mathematischen Wissenschaften mit Einschluss ihrer Anwendungen, Band I 2, Heft 10, Teil I, B. G. Teubner Verlagsgesellschaft, Stuttgart, 1958 (German). MR 167481
- Régis Dupont, Fast evaluation of modular functions using Newton iterations and the AGM, To appear in Mathematics of Computation, http://www.lix.polytechnique.fr/Labo/Regis.Dupont/preprints/Dupont_FastEvalMod.ps.gz, 2007.
- Régis Dupont, Andreas Enge, and François Morain, Building curves with arbitrary small MOV degree over finite prime fields, J. Cryptology 18 (2005), no. 2, 79–89. MR 2148052, DOI 10.1007/s00145-004-0219-7
- Andreas Enge, mpfrcx — a library for univariate polynomials over arbitrary precision real or complex numbers, Version 0.1, http://www.lix.polytechnique.fr/Labo/Andreas.Enge/Software.html.
- Andreas Enge and François Morain, Comparing invariants for class fields of imaginary quadratric fields, Algorithmic number theory (Sydney, 2002) Lecture Notes in Comput. Sci., vol. 2369, Springer, Berlin, 2002, pp. 252–266. MR 2041089, DOI 10.1007/3-540-45455-1_{2}1
- —, Further investigations of the generalised Weber functions, In preparation, 2007.
- Andreas Enge and Reinhard Schertz, Constructing elliptic curves over finite fields using double eta-quotients, J. Théor. Nombres Bordeaux 16 (2004), no. 3, 555–568 (English, with English and French summaries). MR 2144957
- Andreas Enge and Paul Zimmermann, mpc — a library for multiprecision complex arithmetic with exact rounding, Version 0.4.6, http://www.lix.polytechnique.fr/Labo/Andreas.Enge/Software.html.
- Leonhard Euler, Evolutio producti infiniti $(1 - x)(1 - xx)(1 - x^3) (1 - x^4)(1 - x^5)(1 - x^6)$ etc. in seriem simplicem, Acta academiae scientiarum Petropolitanae 1780:I (1783), 125–169, Opera Omnia I.3:472–479.
- Martin Fürer, Faster integer multiplication, Proceedings of the 39th Annual ACM Symposium on Theory of Computing — STOC’07 (New York) (Association for Computing Machinery, ed.), ACM, 2007, pp. 57–66.
- Joachim von zur Gathen and Jürgen Gerhard, Modern computer algebra, Cambridge University Press, New York, 1999. MR 1689167
- Joachim von zur Gathen and Victor Shoup, Computing Frobenius maps and factoring polynomials, Comput. Complexity 2 (1992), no. 3, 187–224. MR 1220071, DOI 10.1007/BF01272074
- Pierrick Gaudry, Assembly support for GMP on AMD64, April 2005, http://www.loria.fr/~gaudry/mpn_AMD64/.
- Alice Gee, Class invariants by Shimura’s reciprocity law, J. Théor. Nombres Bordeaux 11 (1999), no. 1, 45–72 (English, with English and French summaries). Les XXèmes Journées Arithmétiques (Limoges, 1997). MR 1730432
- Alice Gee and Peter Stevenhagen, Generating class fields using Shimura reciprocity, Algorithmic number theory (Portland, OR, 1998) Lecture Notes in Comput. Sci., vol. 1423, Springer, Berlin, 1998, pp. 441–453. MR 1726092, DOI 10.1007/BFb0054883
- Torbjörn Granlund et al., gmp — GNU multiprecision library, Version 4.2.1, http://gmplib.org/.
- Guillaume Hanrot, Vincent Lefèvre, Patrick Pélissier, and Paul Zimmermann et al., mpfr — a library for multiple-precision floating-point computations with exact rounding, Version 2.2.1, http://www.mpfr.org.
- A. K. Lenstra and H. W. Lenstra Jr., Algorithms in number theory, Handbook of theoretical computer science, Vol. A, Elsevier, Amsterdam, 1990, pp. 673–715. MR 1127178
- R. Lercier and E. Riboulet-Deyris, Elliptic curves with complex multiplication, Posting to Number Theory List, http://listserv.nodak.edu/cgi-bin/wa.exe?A2=ind0401&L=nmbrthry&P=R305, 2004.
- Atsuko Miyaji, Masaki Nakabayashi, and Shunzou Takano, New explicit conditions of elliptic curve traces for FR-reduction, IEICE Trans. Fundamentals E84-A (2001), no. 5, 1234–1243.
- Reinhard Schertz, Die singulären Werte der Weberschen Funktionen $\mathfrak {f},\mathfrak {f}sb{1},\mathfrak {f}_{2},$ $\gamma _{2},$ $\gamma _{3}$, J. Reine Angew. Math. 286(287) (1976), 46–74 (German). MR 422213, DOI 10.1515/crll.1976.286-287.46
- Reinhard Schertz, Weber’s class invariants revisited, J. Théor. Nombres Bordeaux 14 (2002), no. 1, 325–343 (English, with English and French summaries). MR 1926005
- A. Schönhage and V. Strassen, Schnelle Multiplikation grosser Zahlen, Computing (Arch. Elektron. Rechnen) 7 (1971), 281–292 (German, with English summary). MR 292344, DOI 10.1007/bf02242355
- Arnold Schönhage, Fast reduction and composition of binary quadratic forms, Proceedings of the 1991 International Symposium on Symbolic and Algebraic Computation — ISSAC ’91 (Stephen M. Watt, ed.), ACM Press, 1991, pp. 128–133.
- René Schoof, The exponents of the groups of points on the reductions of an elliptic curve, Arithmetic algebraic geometry (Texel, 1989) Progr. Math., vol. 89, Birkhäuser Boston, Boston, MA, 1991, pp. 325–335. MR 1085266, DOI 10.1007/978-1-4612-0457-2_{1}5
- Carl Ludwig Siegel, Über die Classenzahl quadratischer Zahlkörper, Acta Arithmetica 1 (1936), 83–86.
- Heinrich Weber, Lehrbuch der Algebra, 2nd ed., vol. 3: Elliptische Funktionen und algebraische Zahlen, Vieweg, Braunschweig, 1908.
Bibliographic Information
- Andreas Enge
- Affiliation: INRIA Saclay–Île-de-France & Laboratoire d’Informatique (CNRS/UMR 7161), École polytechnique, 91128 Palaiseau Cedex, France
- Email: enge@lix.polytechnique.fr
- Received by editor(s): April 24, 2007
- Received by editor(s) in revised form: May 6, 2008
- Published electronically: November 17, 2008
- © Copyright 2008 by Andreas Enge
- Journal: Math. Comp. 78 (2009), 1089-1107
- MSC (2000): Primary 11Y16; Secondary 11G15
- DOI: https://doi.org/10.1090/S0025-5718-08-02200-X
- MathSciNet review: 2476572