Nitsche’s method for general boundary conditions
HTML articles powered by AMS MathViewer
- by Mika Juntunen and Rolf Stenberg;
- Math. Comp. 78 (2009), 1353-1374
- DOI: https://doi.org/10.1090/S0025-5718-08-02183-2
- Published electronically: September 25, 2008
- PDF | Request permission
Abstract:
We introduce a method for treating general boundary conditions in the finite element method generalizing an approach, due to Nitsche (1971), for approximating Dirichlet boundary conditions. We use Poisson’s equations as a model problem and prove a priori and a posteriori error estimates. The method is also compared with the traditional Galerkin method. The theoretical results are verified numerically.References
- Douglas N. Arnold, Franco Brezzi, Bernardo Cockburn, and L. Donatella Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2001/02), no. 5, 1749–1779. MR 1885715, DOI 10.1137/S0036142901384162
- Ivo Babuška, Uday Banerjee, and John E. Osborn, Survey of meshless and generalized finite element methods: a unified approach, Acta Numer. 12 (2003), 1–125. MR 2249154, DOI 10.1017/S0962492902000090
- Roland Becker, Peter Hansbo, and Rolf Stenberg, A finite element method for domain decomposition with non-matching grids, M2AN Math. Model. Numer. Anal. 37 (2003), no. 2, 209–225. MR 1991197, DOI 10.1051/m2an:2003023
- D. Braess and R. Verfürth, A posteriori error estimators for the Raviart-Thomas element, SIAM J. Numer. Anal. 33 (1996), no. 6, 2431–2444. MR 1427472, DOI 10.1137/S0036142994264079
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 520174
- J. Nitsche, Über ein Variationsprinzip zur Lösung von Dirichlet-Problemen bei Verwendung von Teilräumen, die keinen Randbedingungen unterworfen sind, Abh. Math. Sem. Univ. Hamburg 36 (1971), 9–15 (German). MR 341903, DOI 10.1007/BF02995904
- Rolf Stenberg, Mortaring by a method of J. A. Nitsche, Computational mechanics (Buenos Aires, 1998) Centro Internac. Métodos Numér. Ing., Barcelona, 1998, pp. CD-ROM file. MR 1839048
- Rüdiger Verfürth, A review of a posteriori error estimation and adaptive mesh refinement techniques, Wiley, 1996.
Bibliographic Information
- Mika Juntunen
- Affiliation: Institute of Mathematics, Helsinki University of Technology, P. O. Box 1100, 02015 TKK, Finland
- Email: mika.juntunen@tkk.fi
- Rolf Stenberg
- Affiliation: Institute of Mathematics, Helsinki University of Technology, P. O. Box 1100, 02015 TKK, Finland
- Received by editor(s): October 17, 2007
- Received by editor(s) in revised form: May 21, 2008
- Published electronically: September 25, 2008
- Additional Notes: This work was supported by the Finnish National Graduate School in Engineering Mechanics, by the Academy of Finland, and TEKES, the National Technology Agency of Finland.
- © Copyright 2008 American Mathematical Society
- Journal: Math. Comp. 78 (2009), 1353-1374
- MSC (2000): Primary 65N30
- DOI: https://doi.org/10.1090/S0025-5718-08-02183-2
- MathSciNet review: 2501054