## Classification of ternary extremal self-dual codes of length 28

HTML articles powered by AMS MathViewer

- by Masaaki Harada, Akihiro Munemasa and Boris Venkov PDF
- Math. Comp.
**78**(2009), 1787-1796 Request permission

## Abstract:

All $28$-dimensional unimodular lattices with minimum norm $3$ are known. Using this classification, we give a classification of ternary extremal self-dual codes of length $28$. Up to equivalence, there are 6,931 such codes.## References

- R. Bacher and B. Venkov,
*Lattices and association schemes: a unimodular example without roots in dimension $28$*, Ann. Inst. Fourier (Grenoble)**45**(1995), no. 5, 1163–1176 (English, with English and French summaries). MR**1370742** - Roland Bacher and Boris Venkov,
*Réseaux entiers unimodulaires sans racines en dimensions 27 et 28*, Réseaux euclidiens, designs sphériques et formes modulaires, Monogr. Enseign. Math., vol. 37, Enseignement Math., Geneva, 2001, pp. 212–267 (French, with French summary). MR**1878751** - Christine Bachoc, T. Aaron Gulliver, and Masaaki Harada,
*Isodual codes over $Z_{2k}$ and isodual lattices*, J. Algebraic Combin.**12**(2000), no. 3, 223–240. MR**1803233**, DOI 10.1023/A:1011259823212 - W. Bosma and J. Cannon, Handbook of Magma Functions, Department of Mathematics, University of Sydney, Available online at http://magma.maths.usyd.edu.au/magma/.
- John H. Conway, Vera Pless, and Neil J. A. Sloane,
*Self-dual codes over $\textrm {GF}(3)$ and $\textrm {GF}(4)$ of length not exceeding $16$*, IEEE Trans. Inform. Theory**25**(1979), no. 3, 312–322. MR**528009**, DOI 10.1109/TIT.1979.1056047 - J. H. Conway and N. J. A. Sloane,
*Sphere packings, lattices and groups*, 3rd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 290, Springer-Verlag, New York, 1999. With additional contributions by E. Bannai, R. E. Borcherds, J. Leech, S. P. Norton, A. M. Odlyzko, R. A. Parker, L. Queen and B. B. Venkov. MR**1662447**, DOI 10.1007/978-1-4757-6568-7 - U. Dempwolff,
*Translation planes of order $27$*, Des. Codes Cryptogr.**4**(1994), no. 2, 105–121. MR**1268564**, DOI 10.1007/BF01578865 - Masaaki Harada,
*New extremal ternary self-dual codes*, Australas. J. Combin.**17**(1998), 133–145. MR**1626295** - Masaaki Harada,
*An extremal ternary self-dual $[28,14,9]$ code with a trivial automorphism group*, Discrete Math.**239**(2001), no. 1-3, 121–125. MR**1850990**, DOI 10.1016/S0012-365X(01)00041-3 - Masaaki Harada, Masaaki Kitazume, and Michio Ozeki,
*Ternary code construction of unimodular lattices and self-dual codes over $\Bbb Z_6$*, J. Algebraic Combin.**16**(2002), no. 2, 209–223. MR**1943589**, DOI 10.1023/A:1021185314365 - M. Harada and A. Munemasa, Database of Self-Dual Codes, Available online at http://www.math.is.tohoku.ac.jp/~munemasa/selfdualcodes.htm.
- Masaaki Harada, Michio Ozeki, and Kenichiro Tanabe,
*On the covering radius of ternary extremal self-dual codes*, Des. Codes Cryptogr.**33**(2004), no. 2, 149–158. MR**2080361**, DOI 10.1023/B:DESI.0000035468.86695.40 - W. Cary Huffman,
*On extremal self-dual ternary codes of lengths $28$ to $40$*, IEEE Trans. Inform. Theory**38**(1992), no. 4, 1395–1400. MR**1168760**, DOI 10.1109/18.144724 - W. Cary Huffman,
*On the classification and enumeration of self-dual codes*, Finite Fields Appl.**11**(2005), no. 3, 451–490. MR**2158773**, DOI 10.1016/j.ffa.2005.05.012 - Charles J. Colbourn and Jeffrey H. Dinitz (eds.),
*The CRC handbook of combinatorial designs*, CRC Press Series on Discrete Mathematics and its Applications, CRC Press, Boca Raton, FL, 1996. MR**1392993**, DOI 10.1201/9781420049954 - Jeffrey S. Leon, Vera Pless, and N. J. A. Sloane,
*On ternary self-dual codes of length $24$*, IEEE Trans. Inform. Theory**27**(1981), no. 2, 176–180. MR**633414**, DOI 10.1109/TIT.1981.1056328 - C. L. Mallows, V. Pless, and N. J. A. Sloane,
*Self-dual codes over $\textrm {GF}(3)$*, SIAM J. Appl. Math.**31**(1976), no. 4, 649–666. MR**441541**, DOI 10.1137/0131058 - C. L. Mallows and N. J. A. Sloane,
*An upper bound for self-dual codes*, Information and Control**22**(1973), 188–200. MR**414223** - Gabriele Nebe,
*Finite subgroups of $\textrm {GL}_n(\mathbf Q)$ for $25\leq n\leq 31$*, Comm. Algebra**24**(1996), no. 7, 2341–2397. MR**1390378**, DOI 10.1080/00927879608825704 - Vera Pless, N. J. A. Sloane, and Harold N. Ward,
*Ternary codes of minimum weight $6$ and the classification of the self-dual codes of length $20$*, IEEE Trans. Inform. Theory**26**(1980), no. 3, 305–316. MR**570014**, DOI 10.1109/TIT.1980.1056195 - Eric M. Rains and N. J. A. Sloane,
*Self-dual codes*, Handbook of coding theory, Vol. I, II, North-Holland, Amsterdam, 1998, pp. 177–294. MR**1667939**

## Additional Information

**Masaaki Harada**- Affiliation: Department of Mathematical Sciences, Yamagata University, Yamagata 990–8560, Japan
**Akihiro Munemasa**- Affiliation: Graduate School of Information Sciences, Tohoku University, Sendai 980–8579, Japan
**Boris Venkov**- Affiliation: Steklov Institute of Mathematics at St. Petersburg, St. Petersburg 191011, Russia
- Received by editor(s): January 29, 2008
- Received by editor(s) in revised form: June 9, 2008
- Published electronically: October 24, 2008
- Additional Notes: The work of the first and second authors was partially supported by the Sumitomo Foundation (Grant for Basic Science Research Projects, 050034).
- © Copyright 2008 American Mathematical Society
- Journal: Math. Comp.
**78**(2009), 1787-1796 - MSC (2000): Primary 94B05; Secondary 11H71
- DOI: https://doi.org/10.1090/S0025-5718-08-02194-7
- MathSciNet review: 2501075