## Solution of $F(z+1)=\exp \big (F(z)\big )$ in complex $z$-plane

HTML articles powered by AMS MathViewer

- by Dmitrii Kouznetsov PDF
- Math. Comp.
**78**(2009), 1647-1670 Request permission

## Abstract:

Tetration $F$ as the analytic solution of equations $F(z-1)=\ln (F(z))$, $F(0)=1$ is considered. The representation is suggested through the integral equation for values of $F$ at the imaginary axis. Numerical analysis of this equation is described. The straightforward iteration converges within tens of cycles; with double precision arithmetics, the residual of order of 1.e-14 is achieved. The numerical solution for $F$ remains finite at the imaginary axis, approaching fixed points $L$, $L^{*}$ of logarithm ($L=\ln L$). Robustness of the convergence and smallness of the residual indicate the existence of unique tetration $F(z)$, that grows along the real axis and approaches $L$ along the imaginary axis, being analytic in the whole complex $z$-plane except for singularities at integer the $z<-1$ and the cut at $z<-2$. Application of the same method for other cases of the Abel equation is discussed.## References

- Peter Walker,
*Infinitely differentiable generalized logarithmic and exponential functions*, Math. Comp.**57**(1991), no. 196, 723–733. MR**1094963**, DOI 10.1090/S0025-5718-1991-1094963-4 - Wilhelm Ackermann,
*Zum Hilbertschen Aufbau der reellen Zahlen*, Math. Ann.**99**(1928), no. 1, 118–133 (German). MR**1512441**, DOI 10.1007/BF01459088 - M. H. Hooshmand,
*Ultra power and ultra exponential functions*, Integral Transforms Spec. Funct.**17**(2006), no. 8, 549–558. MR**2246500**, DOI 10.1080/10652460500422247 - N. Bromer. Superexponentiation. Mathematics Magazine,
**60**No. 3 (1987), 169-174. - R. L. Goodstein,
*Transfinite ordinals in recursive number theory*, J. Symbolic Logic**12**(1947), 123–129. MR**22537**, DOI 10.2307/2266486 - M. Abramovitz, I. Stegun. 1970. Table of special functions. National Bureau of Standards, NY.
- I. S. Gradshteyn, I.M.Ryshik, 1980. Tables of Integrals, Series and Products. Academic, NY.
- R. Arthur Knoebel,
*Exponentials reiterated*, Amer. Math. Monthly**88**(1981), no. 4, 235–252. MR**610484**, DOI 10.2307/2320546 - I. N. Baker and P. J. Rippon,
*A note on complex iteration*, Amer. Math. Monthly**92**(1985), no. 7, 501–504. MR**801229**, DOI 10.2307/2322513 - J. MacDonnell,
*Some critical points on the hyperpower functions ${}^n\!x=x^{x^{x^{\cdot ^{\cdot ^{\cdot }}}}}$*, Internat. J. Math. Ed. Sci. Tech.**20**(1989), no. 2, 297–305. MR**994348**, DOI 10.1080/0020739890200210 - Hellmuth Kneser,
*Reelle analytische Lösungen der Gleichung $\varphi (\varphi (x))=e^x$ und verwandter Funktional-gleichungen*, J. Reine Angew. Math.**187**(1949), 56–67 (German). MR**35385** - Rufus Isaacs,
*Iterates of fractional order*, Canad. J. Math.**2**(1950), 409–416. MR**40560**, DOI 10.4153/cjm-1950-038-8 - Jitka Laitochová,
*Group iteration for Abel’s functional equation*, Nonlinear Anal. Hybrid Syst.**1**(2007), no. 1, 95–102. MR**2340265**, DOI 10.1016/j.nahs.2006.04.002 - G. Belitskii and Yu. Lyubich,
*The real-analytic solutions of the Abel functional equation*, Studia Math.**134**(1999), no. 2, 135–141. MR**1688221**, DOI 10.4064/sm-134-2-135-141 - J. Kobza,
*Iterative functional equation $x(x(t))=f(t)$ with $f(t)$ piecewise linear*, Proceedings of the 8th International Congress on Computational and Applied Mathematics, ICCAM-98 (Leuven), 2000, pp. 331–347. MR**1747229**, DOI 10.1016/S0377-0427(99)00308-8 - M. Kuczma,
*On the functional equation $\varphi ^{n}(x)=g(x)$*, Ann. Polon. Math.**11**(1961), 161–175. MR**131681**, DOI 10.4064/ap-11-2-161-175 - James C. Lillo,
*The functional equation $f^{n}\,(x)=g(x)endmt.$*, Ark. Mat.**5**(1963/65), 357–361 (1963/65). MR**217468**, DOI 10.1007/BF02591136 - G. Arfken, “Cauchy’s Integral Formula”. no. 6.4 in Mathematical Methods for Physicists, 3rd ed., Orlando, FL, Academic Press, pp. 371-376, 1985.
- W. Kaplan, “Cauchy’s Integral Formula”. no. 9.9 in Advanced Calculus, 4th ed., Reading, MA, Addison-Wesley, pp. 598-599, 1991.
- K. Knopp, “Cauchy’s Integral Formulas”. Ch. 5 in Theory of Functions Parts I and II, Two Volumes Bound as One, Part I. New York, Dover, pp. 61-66, 1996.
- S. G. Krantz, “The Cauchy Integral Theorem and Formula”. no. 2.3 in Handbook of Complex Variables. Boston, MA, Birkhäuser, pp. 26-29, 1999.
- Philip M. Morse and Herman Feshbach,
*Methods of theoretical physics. 2 volumes*, McGraw-Hill Book Co., Inc., New York-Toronto-London, 1953. MR**0059774** - F. S. Woods, “Cauchy’s Theorem”. no. 146 in Advanced Calculus: A Course Arranged with Special Reference to the Needs of Students of Applied Mathematics. Boston, MA, Ginn, pp. 352-353, 1926.
- Kendall Atkinson,
*An automatic program for linear Fredholm integral equations of the second kind*, ACM Trans. Math. Software**2**(1976), no. 2, 154–171. MR**418489**, DOI 10.1145/355681.355686 - N. K. Al′bov,
*A criterion for the solvability of Fredholm equations*, Mat. Sb. (N.S.)**127(169)**(1985), no. 1, 113–119, 143 (Russian). MR**791320** - J. Guy, B. Mangeot, and A. Salès,
*Solutions for Fredholm equations through nonlinear iterative processes*, J. Phys. A**17**(1984), no. 7, 1403–1413. MR**748773** - William H. Press, Saul A. Teukolsky, William T. Vetterling, and Brian P. Flannery,
*Numerical recipes in FORTRAN*, 2nd ed., Cambridge University Press, Cambridge, 1992. The art of scientific computing; With a separately available computer disk. MR**1196230** - D. Kouznetsov. Portrait of the analytic extension of the 4th Ackermann finction in the complex plane. http://en.citizendium.org/wiki/Image:Analytic4thAckermannFunction00.jpg

## Additional Information

**Dmitrii Kouznetsov**- Affiliation: Institute for Laser Science, University of Electro-Communications, 1-5-1 Chofugaoka, Chofushi, Tokyo, 182-8585, Japan
- Email: dima@ils.uec.ac.jp
- Received by editor(s): March 17, 2008
- Received by editor(s) in revised form: June 20, 2008
- Published electronically: January 6, 2009
- © Copyright 2009
American Mathematical Society

The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp.
**78**(2009), 1647-1670 - MSC (2000): Primary 30A99; Secondary 33F99
- DOI: https://doi.org/10.1090/S0025-5718-09-02188-7
- MathSciNet review: 2501068