## The computation of resonances in open systems using a perfectly matched layer

HTML articles powered by AMS MathViewer

- by Seungil Kim and Joseph E. Pasciak PDF
- Math. Comp.
**78**(2009), 1375-1398 Request permission

## Abstract:

In this paper, we consider the problem of computing resonances in open systems. We first characterize resonances in terms of (improper) eigenfunctions of the Helmholtz operator on an unbounded domain. The perfectly matched layer (PML) technique has been successfully applied to the computation of scattering problems. We shall see that the application of PML converts the resonance problem to a standard eigenvalue problem (still on an infinite domain). This new eigenvalue problem involves an operator which resembles the original Helmholtz equation transformed by a complex shift in the coordinate system. Our goal will be to approximate the shifted operator first by replacing the infinite domain by a finite (computational) domain with a convenient boundary condition and second by applying finite elements on the computational domain. We shall prove that the first of these steps leads to eigenvalue convergence (to the desired resonance values) which is free from spurious computational eigenvalues provided that the size of computational domain is sufficiently large. The analysis of the second step is classical. Finally, we illustrate the behavior of the method applied to numerical experiments in one and two spatial dimensions.## References

- J. Aguilar and J. M. Combes,
*A class of analytic perturbations for one-body Schrödinger Hamiltonians*, Comm. Math. Phys.**22**(1971), 269–279. MR**345551** - S. Balay, K. Buschelman, V. Eijkhout, W. D. Gropp, D. Kaushik, M. G. Knepley, L. C. McInnes, B. F. Smith, and H. Zhang. PETSc users manual. Technical Report ANL-95/11 - Revision 2.1.5, Argonne National Laboratory, 2004.
- E. Balslev and J. M. Combes,
*Spectral properties of many-body Schrödinger operators with dilatation-analytic interactions*, Comm. Math. Phys.**22**(1971), 280–294. MR**345552** - Jean-Pierre Berenger,
*A perfectly matched layer for the absorption of electromagnetic waves*, J. Comput. Phys.**114**(1994), no. 2, 185–200. MR**1294924**, DOI 10.1006/jcph.1994.1159 - Jean-Pierre Berenger,
*Three-dimensional perfectly matched layer for the absorption of electromagnetic waves*, J. Comput. Phys.**127**(1996), no. 2, 363–379. MR**1412240**, DOI 10.1006/jcph.1996.0181 - Daniele Boffi,
*Fortin operator and discrete compactness for edge elements*, Numer. Math.**87**(2000), no. 2, 229–246. MR**1804657**, DOI 10.1007/s002110000182 - D. Boffi, P. Fernandes, L. Gastaldi, and I. Perugia,
*Computational models of electromagnetic resonators: analysis of edge element approximation*, SIAM J. Numer. Anal.**36**(1999), no. 4, 1264–1290. MR**1701792**, DOI 10.1137/S003614299731853X - J. H. Bramble and J. E. Osborn,
*Rate of convergence estimates for nonselfadjoint eigenvalue approximations*, Math. Comp.**27**(1973), 525–549. MR**366029**, DOI 10.1090/S0025-5718-1973-0366029-9 - James H. Bramble and Joseph E. Pasciak,
*Analysis of a finite PML approximation for the three dimensional time-harmonic Maxwell and acoustic scattering problems*, Math. Comp.**76**(2007), no. 258, 597–614. MR**2291829**, DOI 10.1090/S0025-5718-06-01930-2 - W. Chew and W. Weedon. A 3D perfectly matched medium for modified Maxwell’s equations with stretched coordinates.
*Microwave Opt. Techno. Lett.*, 13(7):599–604, 1994. - Francis Collino and Peter Monk,
*The perfectly matched layer in curvilinear coordinates*, SIAM J. Sci. Comput.**19**(1998), no. 6, 2061–2090. MR**1638033**, DOI 10.1137/S1064827596301406 - David Colton and Rainer Kress,
*Inverse acoustic and electromagnetic scattering theory*, 2nd ed., Applied Mathematical Sciences, vol. 93, Springer-Verlag, Berlin, 1998. MR**1635980**, DOI 10.1007/978-3-662-03537-5 - Stefan Hein, Thorsten Hohage, and Werner Koch,
*On resonances in open systems*, J. Fluid Mech.**506**(2004), 255–284. MR**2259489**, DOI 10.1017/S0022112004008584 - Stefan Hein, Thorsten Hohage, Werner Koch, and Joachim Schöberl,
*Acoustic resonances in a high-lift configuration*, J. Fluid Mech.**582**(2007), 179–202. MR**2331498**, DOI 10.1017/S0022112007005770 - Vicente Hernandez, Jose E. Roman, and Vicente Vidal,
*SLEPc: a scalable and flexible toolkit for the solution of eigenvalue problems*, ACM Trans. Math. Software**31**(2005), no. 3, 351–362. MR**2266798**, DOI 10.1145/1089014.1089019 - P. D. Hislop and I. M. Sigal,
*Introduction to spectral theory*, Applied Mathematical Sciences, vol. 113, Springer-Verlag, New York, 1996. With applications to Schrödinger operators. MR**1361167**, DOI 10.1007/978-1-4612-0741-2 - Tosio Kato,
*Perturbation theory for linear operators*, 2nd ed., Grundlehren der Mathematischen Wissenschaften, Band 132, Springer-Verlag, Berlin-New York, 1976. MR**0407617** - S. Kim and J. E. Pasciak. Analysis of a Cartesian PML approximation to acoustic scattering problems in $\mathbb {R}^2$. In preparation.
- Fumio Kikuchi,
*On a discrete compactness property for the Nédélec finite elements*, J. Fac. Sci. Univ. Tokyo Sect. IA Math.**36**(1989), no. 3, 479–490. MR**1039483** - Matti Lassas and Erkki Somersalo,
*Analysis of the PML equations in general convex geometry*, Proc. Roy. Soc. Edinburgh Sect. A**131**(2001), no. 5, 1183–1207. MR**1862449**, DOI 10.1017/S0308210500001335 - Peter Monk,
*Finite element methods for Maxwell’s equations*, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2003. MR**2059447**, DOI 10.1093/acprof:oso/9780198508885.001.0001 - P. Monk and L. Demkowicz,
*Discrete compactness and the approximation of Maxwell’s equations in ${\Bbb R}^3$*, Math. Comp.**70**(2001), no. 234, 507–523. MR**1709155**, DOI 10.1090/S0025-5718-00-01229-1 - John E. Osborn,
*A note on a perturbation theorem for the matrix eigenvalue problem*, Numer. Math.**13**(1969), 152–153. MR**246502**, DOI 10.1007/BF02163233 - Barry Simon,
*Resonances in $n$-body quantum systems with dilatation analytic potentials and the foundations of time-dependent perturbation theory*, Ann. of Math. (2)**97**(1973), 247–274. MR**353896**, DOI 10.2307/1970847 - Lloyd N. Trefethen,
*Pseudospectra of linear operators*, SIAM Rev.**39**(1997), no. 3, 383–406. MR**1469941**, DOI 10.1137/S0036144595295284 - Maciej Zworski,
*Numerical linear algebra and solvability of partial differential equations*, Comm. Math. Phys.**229**(2002), no. 2, 293–307. MR**1923176**, DOI 10.1007/s00220-002-0683-6

## Additional Information

**Seungil Kim**- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843-3368
- Email: sgkim@math.tamu.edu
**Joseph E. Pasciak**- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843-3368
- Email: pasciak@math.tamu.edu
- Received by editor(s): July 9, 2007
- Received by editor(s) in revised form: July 22, 2008
- Published electronically: February 6, 2009
- Additional Notes: This work was supported in part by the National Science Foundation through grant DMS-0609544.
- © Copyright 2009 American Mathematical Society
- Journal: Math. Comp.
**78**(2009), 1375-1398 - MSC (2000): Primary 65N30, 78M10
- DOI: https://doi.org/10.1090/S0025-5718-09-02227-3
- MathSciNet review: 2501055