Error and stability estimates for surface-divergence free RBF interpolants on the sphere
HTML articles powered by AMS MathViewer
- by Edward J. Fuselier, Francis J. Narcowich, Joseph D. Ward and Grady B. Wright;
- Math. Comp. 78 (2009), 2157-2186
- DOI: https://doi.org/10.1090/S0025-5718-09-02214-5
- Published electronically: January 22, 2009
- PDF | Request permission
Abstract:
Recently, a new class of surface-divergence free radial basis function interpolants has been developed for surfaces in $\mathbb {R}^3$. In this paper, several approximation results for this class of interpolants will be derived in the case of the sphere, $\mathbb {S}^2$. In particular, Sobolev-type error estimates are obtained, as well as optimal stability estimates for the associated interpolation matrices. In addition, a Bernstein estimate and an inverse theorem are also derived. Numerical validation of the theoretical results is also given.References
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, 2nd ed., Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 2002. MR 1894376, DOI 10.1007/978-1-4757-3658-8
- T. C. Chen, Global water vapor flux and maintenance during FGGE, Mon. Wea. Rev. 113 (1985), 1801–1819.
- Gregory E. Fasshauer and Jack G. Zhang, On choosing “optimal” shape parameters for RBF approximation, Numer. Algorithms 45 (2007), no. 1-4, 345–368. MR 2355993, DOI 10.1007/s11075-007-9072-8
- Thomas A. Foley, Near optimal parameter selection for multiquadric interpolation, J. Appl. Sci. Comput. 1 (1994), no. 1, 54–69. MR 1295335
- Bengt Fornberg and Julia Zuev, The Runge phenomenon and spatially variable shape parameters in RBF interpolation, Comput. Math. Appl. 54 (2007), no. 3, 379–398. MR 2338845, DOI 10.1016/j.camwa.2007.01.028
- W. Freeden, T. Gervens, and M. Schreiner, Constructive approximation on the sphere, Numerical Mathematics and Scientific Computation, The Clarendon Press, Oxford University Press, New York, 1998. With applications to geomathematics. MR 1694466
- Willi Freeden and Theo Gervens, Vector spherical spline interpolation, Multivariate approximation theory, IV (Oberwolfach, 1989) Internat. Ser. Numer. Math., vol. 90, Birkhäuser, Basel, 1989, pp. 157–171. MR 1034306
- Edward J. Fuselier, Sobolev-type approximation rates for divergence-free and curl-free RBF interpolants, Math. Comp. 77 (2008), no. 263, 1407–1423. MR 2398774, DOI 10.1090/S0025-5718-07-02096-0
- Edward J. Fuselier, Erratum: “Improved stability estimates and a characterization of the native space for matrix-valued RBFs” [Adv. Comput. Math. 29 (2008), no. 3, 269–290; MR2438345], Adv. Comput. Math. 29 (2008), no. 3, 311–313. MR 2438347, DOI 10.1007/s10444-008-9091-6
- Peter B. Gilkey, The index theorem and the heat equation, Mathematics Lecture Series, No. 4, Publish or Perish, Inc., Boston, MA, 1974. Notes by Jon Sacks. MR 458504
- A. E. Gill, Atmosphere-ocean dynamics, Academic Press, London, 1982.
- T. Gneiting, Correlation functions for atmospheric data analysis, Q. J. R. Meteorol. Soc. 125 (1999), 2449–2464.
- Michael Golomb and Hans F. Weinberger, Optimal approximation and error bounds, On numerical approximation. Proceedings of a Symposium, Madison, April 21-23, 1958, Publication of the Mathematics Research Center, U.S. Army, the University of Wisconsin, no. 1, Univ. Wisconsin Press, Madison, WI, 1959, pp. 117–190. Edited by R. E. Langer. MR 121970
- J. R. Holton, An introduction to dynamic meteorology, third ed., Academic Press, San Francisco, 1992.
- S. Hubbert, Radial basis function interpolation on the sphere, Ph.D. thesis, Imperial College, 2002.
- Armin Iske, Multiresolution methods in scattered data modelling, Lecture Notes in Computational Science and Engineering, vol. 37, Springer-Verlag, Berlin, 2004. MR 2060191, DOI 10.1007/978-3-642-18754-4
- John David Jackson, Classical electrodynamics, 2nd ed., John Wiley & Sons, Inc., New York-London-Sydney, 1975. MR 436782
- Kurt Jetter, Joachim Stöckler, and Joseph D. Ward, Error estimates for scattered data interpolation on spheres, Math. Comp. 68 (1999), no. 226, 733–747. MR 1642746, DOI 10.1090/S0025-5718-99-01080-7
- Q. T. Le Gia, F. J. Narcowich, J. D. Ward, and H. Wendland, Continuous and discrete least-squares approximation by radial basis functions on spheres, J. Approx. Theory 143 (2006), no. 1, 124–133. MR 2271729, DOI 10.1016/j.jat.2006.03.007
- J. Levesley and X. Sun, Approximation in rough native spaces by shifts of smooth kernels on spheres, J. Approx. Theory 133 (2005), no. 2, 269–283. MR 2129483, DOI 10.1016/j.jat.2004.12.005
- J.-L. Lions and E. Magenes, Non-homogeneous boundary value problems and applications. Vol. I, Die Grundlehren der mathematischen Wissenschaften, Band 181, Springer-Verlag, New York-Heidelberg, 1972. Translated from the French by P. Kenneth. MR 350177
- C. L. Mader, Numerical modeling of water waves, CRC Press, Boca Raton, 2004.
- W. R. Madych and S. A. Nelson, Multivariate interpolation and conditionally positive definite functions, Approx. Theory Appl. 4 (1988), no. 4, 77–89. MR 986343
- Bertil Matérn, Spatial variation, 2nd ed., Lecture Notes in Statistics, vol. 36, Springer-Verlag, Berlin, 1986. With a Swedish summary. MR 867886, DOI 10.1007/978-1-4615-7892-5
- Tanya M. Morton and Marian Neamtu, Error bounds for solving pseudodifferential equations on spheres by collocation with zonal kernels, J. Approx. Theory 114 (2002), no. 2, 242–268. MR 1883408, DOI 10.1006/jath.2001.3642
- Claus Müller, Spherical harmonics, Lecture Notes in Mathematics, vol. 17, Springer-Verlag, Berlin-New York, 1966. MR 199449, DOI 10.1007/BFb0094775
- Francis J. Narcowich, Xingping Sun, Joseph D. Ward, and Holger Wendland, Direct and inverse Sobolev error estimates for scattered data interpolation via spherical basis functions, Found. Comput. Math. 7 (2007), no. 3, 369–390. MR 2335250, DOI 10.1007/s10208-005-0197-7
- Francis J. Narcowich, Xinping Sun, and Joseph D. Ward, Approximation power of RBFs and their associated SBFs: a connection, Adv. Comput. Math. 27 (2007), no. 1, 107–124. MR 2317924, DOI 10.1007/s10444-005-7506-1
- Francis J. Narcowich and Joseph D. Ward, Generalized Hermite interpolation via matrix-valued conditionally positive definite functions, Math. Comp. 63 (1994), no. 208, 661–687. MR 1254147, DOI 10.1090/S0025-5718-1994-1254147-6
- Francis J. Narcowich and Joseph D. Ward, Scattered data interpolation on spheres: error estimates and locally supported basis functions, SIAM J. Math. Anal. 33 (2002), no. 6, 1393–1410. MR 1920637, DOI 10.1137/S0036141001395054
- Francis J. Narcowich and Joseph D. Ward, Scattered-data interpolation on ${\Bbb R}^n$: error estimates for radial basis and band-limited functions, SIAM J. Math. Anal. 36 (2004), no. 1, 284–300. MR 2083863, DOI 10.1137/S0036141002413579
- Francis J. Narcowich, Joseph D. Ward, and Holger Wendland, Refined error estimates for radial basis function interpolation, Constr. Approx. 19 (2003), no. 4, 541–564. MR 1998904, DOI 10.1007/s00365-002-0529-7
- Francis J. Narcowich, Joseph D. Ward, and Holger Wendland, Sobolev bounds on functions with scattered zeros, with applications to radial basis function surface fitting, Math. Comp. 74 (2005), no. 250, 743–763. MR 2114646, DOI 10.1090/S0025-5718-04-01708-9
- Francis J. Narcowich, Joseph D. Ward, and Holger Wendland, Sobolev error estimates and a Bernstein inequality for scattered data interpolation via radial basis functions, Constr. Approx. 24 (2006), no. 2, 175–186. MR 2239119, DOI 10.1007/s00365-005-0624-7
- Francis J. Narcowich, Joseph D. Ward, and Grady B. Wright, Divergence-free RBFs on surfaces, J. Fourier Anal. Appl. 13 (2007), no. 6, 643–663. MR 2350442, DOI 10.1007/s00041-006-6903-2
- Shmuel Rippa, An algorithm for selecting a good value for the parameter $c$ in radial basis function interpolation, Adv. Comput. Math. 11 (1999), no. 2-3, 193–210. Radial basis functions and their applications. MR 1731697, DOI 10.1023/A:1018975909870
- E. B. Saff and A. B. J. Kuijlaars, Distributing many points on a sphere, Math. Intelligencer 19 (1997), no. 1, 5–11. MR 1439152, DOI 10.1007/BF03024331
- R. Schaback, Improved error bounds for scattered data interpolation by radial basis functions, Math. Comp. 68 (1999), no. 225, 201–216. MR 1604379, DOI 10.1090/S0025-5718-99-01009-1
- Robert Schaback, Error estimates and condition numbers for radial basis function interpolation, Adv. Comput. Math. 3 (1995), no. 3, 251–264. MR 1325034, DOI 10.1007/BF02432002
- Paul N. Swarztrauber, The approximation of vector functions and their derivatives on the sphere, SIAM J. Numer. Anal. 18 (1981), no. 2, 191–210. MR 612138, DOI 10.1137/0718015
- Holger Wendland, Piecewise polynomial, positive definite and compactly supported radial functions of minimal degree, Adv. Comput. Math. 4 (1995), no. 4, 389–396. MR 1366510, DOI 10.1007/BF02123482
- Holger Wendland, Scattered data approximation, Cambridge Monographs on Applied and Computational Mathematics, vol. 17, Cambridge University Press, Cambridge, 2005. MR 2131724
- David L. Williamson, John B. Drake, James J. Hack, Rüdiger Jakob, and Paul N. Swarztrauber, A standard test set for numerical approximations to the shallow water equations in spherical geometry, J. Comput. Phys. 102 (1992), no. 1, 211–224. MR 1177513, DOI 10.1016/S0021-9991(05)80016-6
- R. S. Womersley and I. H. Sloan, Interpolation and cubature on the sphere, accessed 2008, http://web.maths.unsw.edu.au/~rsw/Sphere/.
- Zong Min Wu and Robert Schaback, Local error estimates for radial basis function interpolation of scattered data, IMA J. Numer. Anal. 13 (1993), no. 1, 13–27. MR 1199027, DOI 10.1093/imanum/13.1.13
Bibliographic Information
- Edward J. Fuselier
- Affiliation: Department of Mathematical Sciences, United States Military Academy, West Point, New York 10996
- Email: edward.fuselier@usma.edu
- Francis J. Narcowich
- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843-3368
- MR Author ID: 129435
- Email: fnarc@math.tamu.edu
- Joseph D. Ward
- Affiliation: Department of Mathematics, Texas A&M University, College Station, Texas 77843-3368
- MR Author ID: 180590
- Email: jward@math.tamu.edu
- Grady B. Wright
- Affiliation: Department of Mathematics, Boise State University, Boise, Idaho 83725-1555
- Email: wright@diamond.boisestate.edu
- Received by editor(s): February 8, 2008
- Received by editor(s) in revised form: August 25, 2008
- Published electronically: January 22, 2009
- Additional Notes: The second author’s research was supported by grant DMS-0504353 from the National Science Foundation.
The third author’s research was supported by grant DMS-0504353 from the National Science Foundation.
The fourth author’s research was supported by grant ATM-0801309 from the National Science Foundation. - © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 78 (2009), 2157-2186
- MSC (2000): Primary 41A05, 41A63; Secondary 76M25, 86-08, 86A10
- DOI: https://doi.org/10.1090/S0025-5718-09-02214-5
- MathSciNet review: 2521283