General order multivariate Padé approximants for Pseudo-multivariate functions. II
HTML articles powered by AMS MathViewer
- by Ping Zhou, Annie Cuyt and Jieqing Tan;
- Math. Comp. 78 (2009), 2137-2155
- DOI: https://doi.org/10.1090/S0025-5718-09-02226-1
- Published electronically: February 2, 2009
- PDF | Request permission
Abstract:
Explicit formulas for general order multivariate Padé approximants of pseudo-multivariate functions are constructed on specific index sets. Examples include the multivariate forms of the exponential function \begin{equation*} E\left (\underline {x}\right ) =\sum _{j_{1},j_{2},\ldots ,j_{m}=0}^{\infty } \frac {x_{1}^{j_{1}}x_{2}^{j_{2}}\cdots x_{m}^{j_{m}}}{\left ( j_{1}+j_{2}+\cdots +j_{m}\right ) !}, \end{equation*} the logarithm function \begin{equation*} L(\underline {x})=\sum _{j_{1}+j_{2}+\cdots +j_{m}\geq 1}\frac { x_{1}^{j_{1}}x_{2}^{j_{2}}\cdots x_{m}^{j_{m}}}{j_{1}+j_{2}+\cdots +j_{m}}, \end{equation*} the Lauricella function \begin{equation*} F_{D}^{\left ( m\right ) }\left ( a,1,\ldots ,1;c;x_{1},\ldots ,x_{m}\right ) =\sum _{j_{1},j_{2},\ldots ,j_{m}=0}^{\infty }\frac {\left ( a\right ) _{j_{1}+\cdots +j_{m}}}{\left ( c\right ) _{j_{1}+\cdots +j_{m}}} x_{1}^{j_{1}}\cdots x_{m}^{j_{m}}, \end{equation*} and many more. We prove that the constructed approximants inherit the normality and consistency properties of their univariate relatives. These properties do not hold in general for multivariate Padé approximants. A truncation error upperbound is also given.References
- P. Appell and J. Kampé de Fériet, Fonctions hypergéométriques et hypersphériques: polynômes d’Hermite, Paris: Gauthier-Villars, 1926.
- George A. Baker Jr. and Peter Graves-Morris, Padé approximants. Part I, Encyclopedia of Mathematics and its Applications, vol. 13, Addison-Wesley Publishing Co., Reading, MA, 1981. Basic theory; With a foreword by Peter A. Carruthers. MR 635619
- Annie Cuyt, How well can the concept of Padé approximant be generalized to the multivariate case?, J. Comput. Appl. Math. 105 (1999), no. 1-2, 25–50. Continued fractions and geometric function theory (CONFUN) (Trondheim, 1997). MR 1690577, DOI 10.1016/S0377-0427(99)00028-X
- A. Cuyt, K. A. Driver, and D. S. Lubinsky, A direct approach to convergence of multivariate, nonhomogeneous, Padé approximants, J. Comput. Appl. Math. 69 (1996), no. 2, 353–366. MR 1395293, DOI 10.1016/0377-0427(95)00044-5
- Annie Cuyt, Kathy Driver, and Doron Lubinsky, Kronecker type theorems, normality and continuity of the multivariate Padé operator, Numer. Math. 73 (1996), no. 3, 311–327. MR 1389490, DOI 10.1007/s002110050195
- Annie Cuyt, Jieqing Tan, and Ping Zhou, General order multivariate Padé approximants for pseudo-multivariate functions, Math. Comp. 75 (2006), no. 254, 727–741. MR 2196989, DOI 10.1090/S0025-5718-06-01789-3
- G. Lauricella, Sulla funzioni ipergeometriche a più variabili, Rend. Circ. Math. Palermo 7(1893), 111-158.
- Manfred Reimer, Constructive theory of multivariate functions, Bibliographisches Institut, Mannheim, 1990. With an application to tomography. MR 1115901
- J. Stoer and R. Bulirsch, Introduction to numerical analysis, 2nd ed., Texts in Applied Mathematics, vol. 12, Springer-Verlag, New York, 1993. Translated from the German by R. Bartels, W. Gautschi and C. Witzgall. MR 1295246, DOI 10.1007/978-1-4757-2272-7
- Jieqing Tan and Ping Zhou, On the finite sum representations of the Lauricella functions $F_D$, Adv. Comput. Math. 23 (2005), no. 4, 333–351. MR 2137460, DOI 10.1007/s10444-004-1838-0
- Ping Zhou, More examples on general order multivariate Padé approximants for pseudo-multivariate functions, Electron. Trans. Numer. Anal. 25 (2006), 302–308. MR 2280379
Bibliographic Information
- Ping Zhou
- Affiliation: Department of Mathematics, Statistics and Computer Science, St. Francis Xavier University, Antigonish, NS, Canada, B2G 2W5
- Email: pzhou@stfx.ca
- Annie Cuyt
- Affiliation: Department of Mathematics and Computer Science, University of Antwerp, Middelheimlaan 1, B-2020 Antwerpen, Belgium
- MR Author ID: 53570
- Email: annie.cuyt@ua.ac.be
- Jieqing Tan
- Affiliation: Institute of Applied Mathematics, Hefei University of Technology, 193 Tunxi Road, 230009 Hefei, People’s Republic of China
- Email: jqtan@mail.hf.ah.cn
- Received by editor(s): August 10, 2007
- Received by editor(s) in revised form: September 5, 2008
- Published electronically: February 2, 2009
- Additional Notes: The first author’s research is supported by NSERC of Canada
The second author is Research Director of FWO-Vlaanderen
The third author’s research is supported by the National Natural Science Foundation of China under Grant No. 60473114 - © Copyright 2009 American Mathematical Society
- Journal: Math. Comp. 78 (2009), 2137-2155
- MSC (2000): Primary 41A21
- DOI: https://doi.org/10.1090/S0025-5718-09-02226-1
- MathSciNet review: 2521282