Computation of highly ramified coverings
Authors:
Raimundas Vidunas and Alexander V. Kitaev
Journal:
Math. Comp. 78 (2009), 2371-2395
MSC (2000):
Primary 57M12, 34M55; Secondary 33E17
DOI:
https://doi.org/10.1090/S0025-5718-09-02233-9
Published electronically:
February 11, 2009
MathSciNet review:
2521293
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: An almost Belyi covering is an algebraic covering of the projective line, such that all ramified points except one simple ramified point lie above a set of 3 points of the projective line. In general, there are 1-dimensional families of these coverings with a fixed ramification pattern. (That is, Hurwitz spaces for these coverings are curves.) In this paper, three almost Belyi coverings of degrees 11, 12, and 20 are explicitly constructed. We demonstrate how these coverings can be used for computation of several algebraic solutions of the sixth Painlevé equation.
- 1. F. V. Andreev and A. V. Kitaev, Some examples of 𝑅𝑆²₃(3)-transformations of ranks 5 and 6 as the higher order transformations for the hypergeometric function, Ramanujan J. 7 (2003), no. 4, 455–476. MR 2040984, https://doi.org/10.1023/B:RAMA.0000012428.77217.bc
- 2. F. V. Andreev and A. V. Kitaev, Transformations 𝑅𝑆²₄(3) of the ranks ≤4 and algebraic solutions of the sixth Painlevé equation, Comm. Math. Phys. 228 (2002), no. 1, 151–176. MR 1911252, https://doi.org/10.1007/s002200200653
- 3. Elizabeth A. Arnold, Modular algorithms for computing Gröbner bases, J. Symbolic Comput. 35 (2003), no. 4, 403–419. MR 1976575, https://doi.org/10.1016/S0747-7171(02)00140-2
- 4. G. V. Belyĭ, Galois extensions of a maximal cyclotomic field, Izv. Akad. Nauk SSSR Ser. Mat. 43 (1979), no. 2, 267–276, 479 (Russian). MR 534593
- 5. Philip Boalch, The fifty-two icosahedral solutions to Painlevé VI, J. Reine Angew. Math. 596 (2006), 183–214. MR 2254812, https://doi.org/10.1515/CRELLE.2006.059
- 6. Philip Boalch, Some explicit solutions to the Riemann-Hilbert problem, Differential equations and quantum groups, IRMA Lect. Math. Theor. Phys., vol. 9, Eur. Math. Soc., Zürich, 2007, pp. 85–112. MR 2322328
- 7. Philip Boalch, Higher genus icosahedral Painlevé curves, Funkcial. Ekvac. 50 (2007), no. 1, 19–32. MR 2332077, https://doi.org/10.1619/fesi.50.19
- 8. Jean-Marc Couveignes, Tools for the computation of families of coverings, Aspects of Galois theory (Gainesville, FL, 1996) London Math. Soc. Lecture Note Ser., vol. 256, Cambridge Univ. Press, Cambridge, 1999, pp. 38–65. MR 1708601
- 9. Steven Diaz, Ron Donagi, and David Harbater, Every curve is a Hurwitz space, Duke Math. J. 59 (1989), no. 3, 737–746. MR 1046746, https://doi.org/10.1215/S0012-7094-89-05933-4
- 10. Charles F. Doran, Algebraic and geometric isomonodromic deformations, J. Differential Geom. 59 (2001), no. 1, 33–85. MR 1909248
- 11. B. Dubrovin and M. Mazzocco, Monodromy of certain Painlevé-VI transcendents and reflection groups, Invent. Math. 141 (2000), no. 1, 55–147. MR 1767271, https://doi.org/10.1007/PL00005790
- 12. Alexandre Grothendieck, Esquisse d’un programme, Geometric Galois actions, 1, London Math. Soc. Lecture Note Ser., vol. 242, Cambridge Univ. Press, Cambridge, 1997, pp. 5–48 (French, with French summary). With an English translation on pp. 243–283. MR 1483107
- 13. G.-M. Greuel, G. Pfister, H. Schönemann, SINGULAR 2.0.3. A Computer Algebra System for Polynomial Computations, Centre for Computer Algebra, University of Kaiserslautern (2005). http://www.singular.uni-kl.de.
- 14. Robin Hartshorne, Algebraic geometry, Springer-Verlag, New York-Heidelberg, 1977. Graduate Texts in Mathematics, No. 52. MR 0463157
- 15. Joachim A. Hempel, Existence conditions for a class of modular subgroups of genus zero, Bull. Austral. Math. Soc. 66 (2002), no. 3, 517–525. MR 1939212, https://doi.org/10.1017/S0004972700040351
- 16. Michio Jimbo, Tetsuji Miwa, and Kimio Ueno, Monodromy preserving deformation of linear ordinary differential equations with rational coefficients. I. General theory and 𝜏-function, Phys. D 2 (1981), no. 2, 306–352. MR 630674, https://doi.org/10.1016/0167-2789(81)90013-0
- 17. A. V. Kitaev, Special functions of isomonodromy type, rational transformations of the spectral parameter, and algebraic solutions of the sixth Painlevé equation, Algebra i Analiz 14 (2002), no. 3, 121–139 (Russian, with Russian summary); English transl., St. Petersburg Math. J. 14 (2003), no. 3, 453–465. MR 1921990
- 18. A. V. Kitaev, Grothendieck’s dessins d’enfants, their deformations, and algebraic solutions of the sixth Painlevé and Gauss hypergeometric equations, Algebra i Analiz 17 (2005), no. 1, 224–275; English transl., St. Petersburg Math. J. 17 (2006), no. 1, 169–206. MR 2140681, https://doi.org/10.1090/S1061-0022-06-00899-5
- 19. Alexander V. Kitaev, Remarks towards a classification of 𝑅𝑆₄²(3)-transformations and algebraic solutions of the sixth Painlevé equation, Théories asymptotiques et équations de Painlevé, Sémin. Congr., vol. 14, Soc. Math. France, Paris, 2006, pp. 199–227 (English, with English and French summaries). MR 2353466
- 20. E. M. Kreĭnes, Families of geometric parasitic solutions of systems of equations for the Belyĭ function of genus zero, Fundam. Prikl. Mat. 9 (2003), no. 1, 103–111 (Russian, with English and Russian summaries); English transl., J. Math. Sci. (N.Y.) 128 (2005), no. 6, 3396–3401. MR 2072622, https://doi.org/10.1007/s10958-005-0278-9
- 21. A. K. Lenstra, H. W. Lenstra Jr., and L. Lovász, Factoring polynomials with rational coefficients, Math. Ann. 261 (1982), no. 4, 515–534. MR 682664, https://doi.org/10.1007/BF01457454
- 22. Kay Magaard, Sergey Shpectorov, and Helmut Völklein, A GAP package for braid orbit computation and applications, Experiment. Math. 12 (2003), no. 4, 385–393. MR 2043989
- 23. Mohamed El Marraki, Nicolas Hanusse, Jörg Zipperer, and Alexander Zvonkin, Cacti, braids and complex polynomials, Sém. Lothar. Combin. 37 (1996), Art. B37b, 36 (English, with English and French summaries). MR 1462334
- 24. G. Shabat, On a class of families of Belyi functions, Formal power series and algebraic combinatorics (Moscow, 2000) Springer, Berlin, 2000, pp. 575–580. MR 1798251
- 25. Leila Schneps, Dessins d’enfants on the Riemann sphere, The Grothendieck theory of dessins d’enfants (Luminy, 1993) London Math. Soc. Lecture Note Ser., vol. 200, Cambridge Univ. Press, Cambridge, 1994, pp. 47–77. MR 1305393
- 26. Raimundas Vidunas and Alexander V. Kitaev, Quadratic transformations of the sixth Painlevé equation with application to algebraic solutions, Math. Nachr. 280 (2007), no. 16, 1834–1855. MR 2365021, https://doi.org/10.1002/mana.200510582
- 27.
R. Vidūnas and A. V. Kitaev, Computation of
-pullback transformations for algebraic Painlevé VI solutions. Available at http://arxiv.org/abs/0705.2963.
- 28. R. Vidūnas and A. V. Kitaev, Schlesinger transformations for algebraic Painlevé VI solutions. Available at http://arxiv.org/abs/0810.2766.
- 29. R. Vidūnas, Algebraic Transformations of Gauss Hypergeometric Functions, Accepted by Funk. Ekvac. Available at http://www.arxiv.org/math.CA/0408269 (2004).
- 30. Raimundas Vidūnas, Transformations of some Gauss hypergeometric functions, J. Comput. Appl. Math. 178 (2005), no. 1-2, 473–487. MR 2127899, https://doi.org/10.1016/j.cam.2004.09.053
- 31.
P. S. Wang, M. J. T. Guy and J. H. Davenport,
-adic reconstruction of rational numbers, SIGSAM Bulletin, Vol. 16, ACM, 1982, pp. 2-3.
- 32. L. Zapponi, Galois action on diameter four trees, preprint http://www.arxiv.org/math.AG/ 0108031 (2001).
- 33. Alexander Zvonkin, Megamaps: construction and examples, Discrete models: combinatorics, computation, and geometry (Paris, 2001) Discrete Math. Theor. Comput. Sci. Proc., AA, Maison Inform. Math. Discrèt. (MIMD), Paris, 2001, pp. 329–339. MR 1888783
Retrieve articles in Mathematics of Computation with MSC (2000): 57M12, 34M55, 33E17
Retrieve articles in all journals with MSC (2000): 57M12, 34M55, 33E17
Additional Information
Raimundas Vidunas
Affiliation:
Department of Mathematics, Kyushu University, Fukuoka 812-8581, Japan
Address at time of publication:
Department of Mathematics, Kobe University, Rokko-dai 1-1, Nada-ku, Kobe 657-8501, Japan
Email:
rvidunas@gmail.com
Alexander V. Kitaev
Affiliation:
School of Mathematics and Statistics, University of Sydney, NSW 2006, Australia
Address at time of publication:
Steklov Mathematical Institute, Fontanka 27, St. Petersburg 191023, Russia
Email:
kitaev@pdmi.ras.ru
DOI:
https://doi.org/10.1090/S0025-5718-09-02233-9
Keywords:
Belyi map,
dessin d'enfant,
the Painlev\'e VI equation.
Received by editor(s):
June 21, 2007
Received by editor(s) in revised form:
October 16, 2008
Published electronically:
February 11, 2009
Additional Notes:
The first author was supported by the 21st Century COE Programme “Development of Dynamic Mathematics with High Functionality” of the Ministry of Education, Culture, Sports, Science and Technology of Japan.
The second author was supported by JSPS grant-in-aide No. $14204012$.
Article copyright:
© Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.