
MATHEMATICS OF COMPUTATION
Volume 78, Number 268, October 2009, Pages 2127–2136
S 0025-5718(09)02242-X
Article electronically published on March 6, 2009

CONVERGENCE OF THE LINEARIZED BREGMAN ITERATION

FOR �1-NORM MINIMIZATION

JIAN-FENG CAI, STANLEY OSHER, AND ZUOWEI SHEN

Abstract. One of the key steps in compressed sensing is to solve the basis
pursuit problem minu∈Rn{‖u‖1 : Au = f}. Bregman iteration was very suc-
cessfully used to solve this problem in [40]. Also, a simple and fast iterative
algorithm based on linearized Bregman iteration was proposed in [40], which is
described in detail with numerical simulations in [35]. A convergence analysis
of the smoothed version of this algorithm was given in [11]. The purpose of
this paper is to prove that the linearized Bregman iteration proposed in [40]
for the basis pursuit problem indeed converges.

1. Introduction

Let A ∈ R
m×n with n > m and f ∈ R

m be given. Assume that A is a surjective
map, i.e., AAT is invertible. Then there are infinitely many solutions for the system
of linear equations Au = f , e.g., u = AT (AAT )−1f is the solution minimizing the
�2-norm among all solutions. For applications in compressed sensing, it amounts
to finding a minimal �1-norm solution, i.e., the solution should satisfy the following
minimization problem:

(1.1) min
u∈Rn

{‖u‖1 : Au = f}.

The set of all solutions of Au = f is convex. Since ‖ · ‖1 is coercive, the set of all
solutions of (1.1) is a nonempty convex set. The interested readers should consult
[14, 15, 16, 17, 27, 38] and references therein on theory of compressed sensing for
more details.

One can transform (1.1) into a linear programming problem, and then solve it by
a conventional linear programming solver in many cases. However, such solvers do
not use, for example, the facts that matrices A are normally formed by rows of some
orthonormal matrices corresponding to fast transforms where both Au and ATu can
be computed by fast transforms, and that the solution to seek is sparse. These facts
are indeed true in the applications of compressed sensing. More importantly, the
algorithm should be robust to noise and should take care of the difficulties that
the matrix A is huge and dense. Therefore, there is a need to find a more efficient
algorithm that adapts to the above challenges.
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For these purposes, a simple and fast algorithm based on linearized Bregman
iteration was proposed in [40]. The linearized Bregman iteration for (1.1) is

(1.2)

{
vk+1 = vk +AT (f −Auk),

uk+1 = δTµ(v
k+1),

where u0 = v0 = 0, and

(1.3) Tµ(w) := [tµ(w(1)), tµ(w(2)), . . . , tµ(w(n))]
T

is the soft thresholding operator given in [26] with

(1.4) tµ(ξ) =

{
0, if |ξ| ≤ µ,

sgn(ξ)(|ξ| − µ), if |ξ| > µ.

In the first step of (1.2), we add the transformed error f − Auk by AT into vk

to obtain vk+1. This can be understood as an updating of vk by an approximation
of a solution of the error equation Au = f −Auk which may not be sparse. In fact,
when AAT = I, AT (f − Auk) is the solution of the error equation minimizing the
�2-norm. In the second step of (1.2), we threshold vk+1 by Tµ. This step produces
a sparse vector uk+1 and removes the noise. In fact, if we choose a large µ (as we
will see later, this is the case in both theory and practice), only large components
in vk+1 are nonzeroes in uk+1. This implies that uk+1 is a sparse vector, and the
noise contained can be efficiently removed. When the observed data f contains
noise, one can stop iteration (1.2) whenever, e.g.,

‖Auk − f‖2 ≤ σ2,

where σ2 is the variance of the noise.
The linearized Bregman iteration (1.2) is very efficient and robust to noise in

solving the problems in which the underlying solution is very sparse. This fact
is shown by the numerical experiments in [35] for the applications arising from
compressed sensing. It can be made even faster by introducing a simple numerical
device called “kicking”, which resembles line search (see [35] for details). Further-
more, the linearized Bregman iteration has led to a very fast frame based deblurring
algorithm as shown in [12].

Finally, we remark that the idea of applying a thresholding operator to each
iterate in an iterative algorithm to obtain a sparse and noise free solution has been
used successfully in image and signal processing in many occasions. The interested
readers should consult, e.g., [7, 6, 8, 9, 10, 13, 20, 21, 22, 24, 25], for details.

It is proven in [11] that if {uk}k∈N generated by (1.2) converges, its limit is the
unique solution of

(1.5) min
u∈Rn

{µ‖u‖1 +
1

2δ
‖u‖2 : Au = f}.

It was also shown in [11] that the limit of (1.2) becomes a solution of the basis
pursuit problem (1.1) as µ → ∞. Furthermore, it was shown in [11] that the
corresponding linearized Bregman iteration converges when a smoothed �1-norm is
used. However, there is no result on the convergence of the sequence {uk}k∈N of
(1.2). In this paper, we prove that iteration (1.2) does converge.
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2. Backgrounds and main results

In this section, we start with some backgrounds of the algorithms, and end up
with our main results.

2.1. Bregman and linearized Bregman iterations. Iterative algorithms in-
volving Bregman distance was introduced to image and signal processing by [18, 19]
and by many other authors. See [34] for an overview. In [34], a Bregman iteration
was proposed for the nondifferentiable TV energy for image restoration. Then, in
[40], it was shown to be remarkably successful for �1-norm minimization problems
in compressed sensing. To further improve the performance of Bregman iteration,
a linearized Bregman iteration was invented in [23]; see also [40]. More details
and an improvement called “kicking” of the linearized Bregman iteration was de-
scribed in [35], and a rigorous theory for a smoothed �1-norm was given in [11].
The linearized Bregman iteration was applied to tight frame-based image deblur-
ring in [12]. Recently, a new type of iteration based on Bregman distance, called
split Bregman iteration, was introduced in [29], which extended the utility of Breg-
man iteration and linearized Bregman iteration to minimizations of more general
�1-based regularizations including total variation, Besov norms and sums of such
things.

The Bregman iteration and the linearized Bregman iteration are all based on
Bregman distance [3], which is defined by

(2.1) Dp
J (u, v) = J(u)− J(v)− 〈u− v, p〉,

where J is a convex function, p ∈ ∂J(v) is a subgradient in the subdifferential of
J at the point v. Notice that Dp

J (u, v) is not a distance in the usual sense, since
Dp

J (u, v) �= Dp
J (v, u) in general. However, it measures the closeness between u and

v in the sense that Dp
J (u, v) ≥ 0, whenever J is convex, and Dp

J (u, v) ≥ Dp
J (w, v)

for all points w on the line segment connecting u and v.
The Bregman iteration for the general problem

(2.2) min
u∈Rn

{J(u) : Au = f}

is, given u0 = p0 = 0,

(2.3)

{
uk+1 = argminu∈Rn{ 1

2‖Au− f‖2 + µDpk

J (u, uk)},
pk+1 = pk − 1

µA
T (Auk − f).

This iteration was first proposed in [34] for total variation denoising, and then
applied to the �1-norm minimization problem (1.1) in [40]. It was proven in [34]
that the error ‖Auk − f‖2 decreases to 0 for any convex function J . It was further
shown in [40] that (2.3) with J(u) = ‖u‖1 reaches a solution of (1.1) in finitely

many steps. By letting fk =
∑k−1

i=0 (f − Aui), it was shown in [34, 40] that the
Bregman iteration has a beautiful formulation

(2.4)

{
fk+1 = fk + (f −Auk)

uk+1 = argminu∈Rn{ 1
2‖Au− fk+1‖2 + µ‖u‖1},

where f0 = 0 and u0 = 0. Since the parameter µ is arbitrary, one can choose
an optimal µ such that the condition number in the second step is optimized.
Therefore, the Bregman iteration (2.4) is efficient in solving (2.2). It was also



2130 JIAN-FENG CAI, STANLEY OSHER, AND ZUOWEI SHEN

explained in [29] why (2.4) with J(u) = ‖u‖1 is particularly efficient in solving
(1.1).

The convergence and error analysis of the Bregman iteration were studied in, for
examples, [4, 34, 37, 40]. It was pointed out in [40] that the Bregman iteration (2.3)
or (2.4) is equivalent to an augmented Lagrangian method in [33, 30, 36, 28, 1].

However, in the second step of (2.4), we need to solve a minimization problem.
To improve the performance, the linearized Bregman iteration was proposed in
[23, 40]. The idea is to approximate the term ‖Au − f‖2 in (2.3) by its Taylor
expansion around uk,

‖Au− f‖2 ≈ ‖Auk − f‖2 + 2〈u,AT (Auk − f)〉+ 1

δ
‖u− uk‖2,

where δ is a fixed parameter. With this, we obtain the linearized Bregman iteration
as follows: Given u0 = p0 = 0, we iterate

(2.5)

{
uk+1 = argminu∈Rn

{
1
2δ‖u− (uk − δAT (Auk − f))‖2 + µDpk

J (u, uk)
}
,

pk+1 = pk − 1
µδ (u

k+1 − uk)− 1
µA

T (Auk − f).

If J(u) = ‖u‖1, the linearized Bregman iteration (2.5) can be reformulated into the
compact form (1.2); see [40, 11].

2.2. Convergence of linearized Bregman iteration for general problems.
The following result of [11] says that if (2.5) converges, the limit is a minimizer of
the right cost functional.

Proposition 2.1 ([11]). Suppose that the sequence {uk}k∈N generated by (2.5)
converges, and {pk}k∈N is bounded. Then the limit of {uk}k∈N is the unique solution
of

(2.6) min
u∈Rn

{µJ(u) + 1

2δ
‖u‖2 : Au = f}.

Furthermore, [11] also gave the following convergence result for (2.5):

Proposition 2.2 ([11]). Suppose that J(u) is convex and differentiable, and its
gradient satisfies

(2.7) ‖∇J(u)−∇J(v)‖2 ≤ β〈∇J(u)−∇J(v), u− v〉, ∀u, v ∈ R
n.

Then both the sequences {uk}k∈N and {pk}k∈N generated by (2.5) with 0 < δ <
2

‖AAT ‖ converge with a rate η < 1.

2.3. Convergence of linearized Bregman iteration for basis pursuit prob-
lem. By applying Proposition 2.1, one obtains the following result for J = ‖ · ‖1.

Proposition 2.3 ([11]). Suppose that the sequence {uk}k∈N generated by (1.2)
converges. Then the limit of {uk}k∈N is the unique solution of

(2.8) min
u∈Rn

{µ‖u‖1 +
1

2δ
‖u‖2 : Au = f}.

Let u∗
µ,0 be the solution of (2.8). Then

lim
µ→∞

‖u∗
µ,0 − u1‖ = 0,

where u1 is the solution of (1.1) that has the minimal �2-norm among all the solu-
tions of (1.1).
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Since J(u) = ‖u‖1 does not satisfy the condition (2.7), one cannot apply Propo-
sition 2.2 to prove the convergence of (1.2). To overcome this, we used in [11] a
convex differentiable function Jε(u) to approximate ‖u‖1,

Jε(u) =

n∑
i=1

Fε(u(i)), with Fε(ξ) =

{
ξ2

2ε , if |ξ| ≤ ε,

|ξ| − ε
2 , if |ξ| > ε.

(2.9)

We remark that Jε is also known as the Huber norm [32] and the Moreau-Yosida
C1-regularization [31] of the �1-norm. It is easy to verify that J0(u) = ‖u‖1, and
Jε with ε > 0 satisfies (2.7). It was also derived in [11] that the linearized Bregman
iteration (2.5) with J = Jε can be reformulated into the following compact formula:

(2.10)

{
vk+1 = vk +AT (f −Auk),

uk+1 = δTµ,ε(v
k+1),

where u0 = v0 = 0, and

(2.11) Tµ,ε(w) := [tµ,ε(w(1)), tµ,ε(w(2)), . . . , tµ,ε(w(n))]
T

is the thresholding operator with

(2.12) tµ,ε(ξ) =

{
ε

µ+εξ, if |ξ| ≤ µ+ ε,

sgn(ξ)(|ξ| − µ), if |ξ| > µ+ ε.

Iteration (2.10) can be understood as a smoothed version of iteration (1.2). By
Propositions 2.1 and 2.2, the sequence {uk}k∈N generated by iteration (2.5) with
J = Jε, ε > 0, converges to u∗

µ,ε, the unique solution of

(2.13) min
u∈Rn

{µJε(u) +
1

2δ
‖u‖2 : Au = f}.

Moreover, we showed in [11] that, as µε → 0, the limit u∗
µ,ε converges to a solu-

tion (2.8). This, together with Proposition 2.3, implies that, for sufficiently small
µε and sufficiently large µ, the linearized Bregman iteration (2.10) gives a good
approximation of the solution of the basis pursuit problem (1.1).

In short, what [11] has achieved is that the basis pursuit problem (1.1) can be
solved as the limit of a smoothed version of iteration (1.2). However, there is no
convergence result for iteration (1.2) itself. In Section 3, we will prove the following
convergence theorem, the main result of the paper, for the linearized Bregman
iteration (1.2) for (1.1). In this sense, this paper can be regarded as a continuation
of [11].

Theorem 2.4 (Main Theorem). Assume that 0 < δ < 1
‖AAT ‖ . Then the sequence

{uk}k∈N generated by (1.2) converges to the unique solution of (1.5), i.e.,

(2.14) lim
k→∞

‖uk − u∗
µ,0‖ = 0,

where u∗
µ,0 is the unique solution of (1.5). Furthermore,

lim
µ→∞

‖u∗
µ,0 − u1‖ = 0,

where u1 is the solution of (1.1) that has the minimal �2-norm among all the solu-
tions of (1.1).



2132 JIAN-FENG CAI, STANLEY OSHER, AND ZUOWEI SHEN

The second part of the theorem follows from the convergence of the sequence
{uk}k∈N and Proposition 2.3. It only remains to prove that the sequence {uk}k∈N

converges, which is done in the next section.
The proof given here goes along with the approach of [11]. Since the area of the

convex optimization is well developed, there is a rich literature on the convergence
of iterative algorithms for constrained minimization. For example, one can show
that the linearized Bregman iteration (2.5) is equivalent to gradient descent ap-
plied to the dual of problem (2.6), hence, it becomes the Uzawa’s algorithm. The
Uzawa’s algorithm is a well studied subject and the interested reader can find more
details for example in [2, 1]. This observation of connecting the linearized Bregman
iteration to the Uzawa’s algorithm is given in [5] where a singular value threshold-
ing algorithm is developed for the matrix completion. A similar observation was
also communicated to the second author of this paper by Wotao Yin in [39]. Once
this linkage is established, the analysis of convergence can be go along with that of
the Uzawa’s algorithm. However, we keep our original proof here, since it helps us
to develop an algorithm for applications beyond compressed sensing. For example,
this proof motivates us to derive an efficient frame based deblurring algorithm and
its convergence analysis in [12].

3. Proof of the convergence

In this section, we prove the convergence of (1.2), i.e., Theorem 2.4. Our strategy
is as follows. We first show that the energy ‖Auk − f‖2 is decreasing by citing a
lemma in [40]. Then, we show the boundedness of the sequence {uk}k∈N, hence
there exists at least one clustering point. Finally, we show that every clustering
point is the unique solution of (1.5). Therefore, by the uniqueness of the solution
of (1.5), we conclude that {uk}k∈N converges to the solution of (1.5).

We first cite a lemma which was shown in [40]. We include the proof to make
the paper self contained.

Lemma 3.1 ([40]). Assume that δATA < I. Then

(3.1) ‖Auk+1 − f‖2 +
(
1

δ
− ‖ATA‖

)
‖uk+1 − uk‖2 ≤ ‖Auk − f‖2.

Proof. By the first equation in (2.5), we have

µ(‖uk+1‖1 − ‖uk‖1 − 〈uk+1 − uk, pk〉) + 1

2δ
‖uk+1 − (uk − δAT (Auk − f))‖2

≤ µ(‖uk‖1 − ‖uk‖1 − 〈uk − uk, pk〉) + 1

2δ
‖uk − (uk − δAT (Auk − f))‖2.

(3.2)

This, together with the nonnegativity of the Bregman distance, implies

‖uk+1 − uk + δAT (Auk − f)‖2 ≤ ‖δAT (Auk − f)‖2,

which is equivalent to

‖uk+1 − uk‖2 + 2δ〈uk+1 − uk, AT (Auk − f)〉 ≤ 0.

With some manipulations, this leads to

‖uk+1 − uk‖2 + δ‖Auk+1 − f‖2 − δ〈uk+1 − uk, ATA(uk+1 − uk)〉 ≤ δ‖Auk − f‖2.
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It, in turn, gives

〈(I − δATA)(uk+1 − uk), uk+1 − uk〉+ δ‖Auk+1 − f‖2 ≤ δ‖Auk − f‖2.
This leads to (3.1). �

The following lemma shows the boundedness of {uk}k∈N. It is shown by orthog-
onally decomposing uk into the sum of two components: one is in the range of AT

and the other is in the kernel of A.

Lemma 3.2. Assume that δATA < I. Then the sequences {uk}k∈N and {vk}k∈N

are bounded.

Proof. Decompose uk into the orthogonal sum of uk = xk + yk, where xk is in the
range of AT , and yk is in the kernel of A. Then, we have

(3.3) xk = A†Auk,

where A† is the pseudo-inverse of A, and A† = AT (AAT )−1 when A is rectangular
and surjective. Since {‖Auk − f‖2}k∈N is a decreasing sequence by Lemma 3.1, the
sequence {‖Auk − f‖2}k∈N converges. Hence the sequence {Auk}k∈N is bounded.
Since A† is a bounded operator, the sequence {A†Auk}k∈N is bounded. By (3.3),
{xk}k∈N, the component of uk in the range of AT , is bounded.

It remains to show that {yk}k∈N is bounded. By the definition of {uk}k∈N in
(1.2), uk = δTµ(v

k), which can be written as

(3.4) uk = δvk + δ(Tµ(v
k)− vk).

Notice that by induction vk = AT
∑k−1

j=0 (f − Auj), which implies that vk is in the

range of AT , so is δvk. From this and (3.4), we deduce that yk must be the orthogo-
nal projection of δ(Tµ(v

k)−vk) onto the kernel of A, i.e., yk = δPKer(A)(Tµ(v
k)−vk),

where PKer(A) is the orthogonal projection onto the kernel of A. Since (Tµ(v
k) −

vk) ∈ [−µ, µ]n by the definition of the soft thresholding in (1.3) and (1.4),
PKer(A)(Tµ(v

k)− vk) is bounded. This concludes that {yk}k∈N is bounded.

Hence {uk}k∈N is bounded. The boundedness of {vk}k∈N is an immediate con-
sequence of (3.4). �

Lemma 3.3. Assume that δATA < I. Then

(3.5) lim
k→∞

‖AT (Auk − f)‖ = 0.

In particular, when A is rectangular and surjective, Auk converges to f , i.e.,

(3.6) lim
k→∞

‖Auk − f‖ = 0.

Proof. Since {uk}k∈N hence {ATAuk}k∈N are bounded by Lemma 3.2, there ex-
ist convergent subsequences of {ATAuk}k∈N. In order to prove (3.5), we show
that each convergent subsequence of {ATAuk}k∈N converges to AT f . For this, let
{ATAuki}i∈N be an arbitrary given convergent subsequence, and denote
limi→∞ AT (f −Auki) = d. We prove that d = 0 by contradiction.

Assume that d �= 0. By the first equation in (1.2), for any finite integer �, we
have

(3.7) vki+�−vki =
�−1∑
j=0

AT (f−Auki+j) =
�−1∑
j=0

AT (f−Auki)+
�−1∑
j=0

ATA(uki−uki+j).
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On the other hand, by (3.1) in Lemma 3.1, one has that
∑∞

k=1 ‖uk+1 − uk‖2 < ∞,
which implies that

(3.8) lim
k→∞

‖uk+1 − uk‖ = 0.

By letting i → ∞ in (3.7), (3.8) implies that, for any finite integer �, limi→∞ vki+�−
vki = �d. Therefore, there exist an i0 such that for all i > i0, ‖vki+�−vki −�d‖ ≤ 1.
Hence

(3.9) ‖vki+�‖ ≥ ‖vki + �d‖ − 1 ≥ �‖d‖ − ‖vki‖ − 1.

By Lemma 3.2, the sequence {vk}k∈N is bounded, i.e.,

(3.10) ‖vk‖ ≤ B, ∀k.
However, if we choose � = 
(2B+2)/‖d‖� that is finite because d �= 0, then by (3.9)
‖vki+�‖ ≥ B + 1. It contradicts (3.10). �

Remark 3.4. Lemma 3.2 and Lemma 3.3 still hold even when A is not surjective,
since the proofs do not depend on the surjectivity of A. In particular, the conclusion
of Lemma 3.3 is that the limit of uk is a solution of minu ‖Au − f‖2, i.e., a least
square solution.

With the above lemmas, we are ready to prove the main result of the paper,
Theorem 2.4.

Proof of Theorem 2.4. In order to prove Theorem 2.4, it only remains to show that
the sequence {uk}k∈N converges. Since {uk}k∈N is bounded by Lemma 3.2, there
exist convergent subsequences. We show that the limit of an arbitrary convergent
subsequence is the unique solution u∗

µ,0 of (2.8). By the uniqueness of u∗
µ,0, we

obtain (2.14).
Let {uki}i∈N be an arbitrary given convergent subsequence and ũ its limit. Next,

we prove that ũ = u∗
µ,0. Since p0 = u0 = 0, by the second equation in (2.5), we

have µpk+ 1
δu

k = AT
∑k−1

j=0 (f −Auj). Define wk =
∑k−1

j=0 (f −Auj). Then, since A

is surjective and both {pk ∈ [−1, 1]n}k∈N and {uk}k∈N are bounded, we have that
{wk}k∈N is bounded, i.e., ‖wk‖ ≤ C for all k.

Let H(u) = µ‖u‖1 + 1
2δ‖u‖2. It is obviously that p0 ∈ ∂‖u0‖1 since p0 = u0 = 0.

By the definition of pk and uk in (2.5), we have pk ∈ ∂‖uk‖1 by induction and
differentiating the energy in the first equation of (2.5). Hence, pki ∈ ∂‖uki‖1.
Therefore, µpki + 1

δu
ki ∈ ∂H(uki). By the nonnegativity of the Bregman distance

D
µpki+ 1

δu
ki

H (u∗
µ,0, u

ki) for H(u) as in (2.1), we obtain

(3.11)

H(uki) ≤ H(u∗
µ,0)− 〈u∗

µ,0 − uki , µpki +
1

δ
uki〉

= H(u∗
µ,0)− 〈A(u∗

µ,0 − uki), wki〉
= H(u∗

µ,0)− 〈u∗
µ,0 − uki , ATwki〉.

On the other hand, by Cauchy-Schwarz inequality, we have

|〈A(u∗
µ,0 − uki), wki〉| ≤ ‖A(u∗

µ,0 − uki)‖‖wki‖ ≤ C‖A(u∗
µ,0 − uki)‖.

Letting i → ∞, and noticing that limi→∞ Auki = Aũ = f = Au∗
µ,0, we obtain

that limi→∞ |〈A(u∗
µ,0 − uki), wki〉| = 0. By letting i → ∞ in (3.11), we have



CONVERGENCE OF THE LINEARIZED BREGMAN ITERATION 2135

H(ũ) ≤ H(u∗
µ,0). This, together with Aũ = f and the uniqueness of u∗

µ,0, implies
that ũ = u∗

µ,0. �

We observe that, in the proof of Theorem 2.4, one needs only the convexity of
‖u‖1 and the boundedness of the subgradient ∂‖u‖1. Therefore, one can extend
Theorem 2.4 to the following theorem. We omit the proof here, since it follows
from that of Theorem 2.4.

Theorem 3.5. Assume that 0 < δ < 1
‖AAT ‖ . Suppose that J(u) is convex and

∂J(u) is bounded. Then the sequence {uk}k∈N generated by (2.5) converges to the
unique solution of (2.6).
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31. J.-B. Hiriart-Urruty and C. Lemaréchal, Convex analysis and minimization algorithms. I,
Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical
Sciences], vol. 305, Springer-Verlag, Berlin, 1993, Fundamentals. MR1261420 (95m:90001)

32. P. J. Huber, Robust regression: asymptotics, conjectures and Monte Carlo, Ann. Statist. 1
(1973), 799–821. MR0356373 (50:8843)

33. K. Ito and K. Kunisch, The augmented Lagrangian method for equality and inequality
constraints in Hilbert spaces, Math. Programming 46 (1990), no. 3, (Ser. A), 341–360.
MR1054143 (91i:90062)

34. S. Osher, M. Burger, D. Goldfarb, J. Xu, and W. Yin, An iterative regularization method

for total variation-based image restoration, Multiscale Model. Simul. 4 (2005), no. 2, 460–489
(electronic). MR2162864 (2006c:49051)

35. S. Osher, Y. Mao, B. Dong, and W. Yin, Fast linearized bregman iteration for compressed
sensing and sparse denoising, 2008, UCLA CAM Reports (08-37).

36. M. J. D. Powell, A method for nonlinear constraints in minimization problems, Optimization
(Sympos., Univ. Keele, Keele, 1968), Academic Press, London, 1969, pp. 283–298. MR0272403
(42:7284)
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