Two-cover descent on hyperelliptic curves
HTML articles powered by AMS MathViewer
- by Nils Bruin and Michael Stoll;
- Math. Comp. 78 (2009), 2347-2370
- DOI: https://doi.org/10.1090/S0025-5718-09-02255-8
- Published electronically: March 11, 2009
- PDF | Request permission
Abstract:
We describe an algorithm that determines a set of unramified covers of a given hyperelliptic curve, with the property that any rational point will lift to one of the covers. In particular, if the algorithm returns an empty set, then the hyperelliptic curve has no rational points. This provides a relatively efficiently tested criterion for solvability of hyperelliptic curves. We also discuss applications of this algorithm to curves of genus $1$ and to curves with rational points.References
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- N. R. Bruin, Chabauty methods and covering techniques applied to generalized Fermat equations, CWI Tract, vol. 133, Stichting Mathematisch Centrum, Centrum voor Wiskunde en Informatica, Amsterdam, 2002. Dissertation, University of Leiden, Leiden, 1999. MR 1916903
- Nils Bruin, Chabauty methods using elliptic curves, J. Reine Angew. Math. 562 (2003), 27–49. MR 2011330, DOI 10.1515/crll.2003.076
- Nils Bruin, Some ternary Diophantine equations of signature $(n,n,2)$, Discovering mathematics with Magma, Algorithms Comput. Math., vol. 19, Springer, Berlin, 2006, pp. 63–91. MR 2278923, DOI 10.1007/978-3-540-37634-7_{3}
- Nils Bruin and Noam D. Elkies, Trinomials $ax^7+bx+c$ and $ax^8+bx+c$ with Galois groups of order 168 and $8\cdot 168$, Algorithmic number theory (Sydney, 2002) Lecture Notes in Comput. Sci., vol. 2369, Springer, Berlin, 2002, pp. 172–188. MR 2041082, DOI 10.1007/3-540-45455-1_{1}4
- Nils Bruin and E. Victor Flynn, Towers of 2-covers of hyperelliptic curves, Trans. Amer. Math. Soc. 357 (2005), no. 11, 4329–4347. MR 2156713, DOI 10.1090/S0002-9947-05-03954-1
- Nils Bruin and Michael Stoll, The Mordell-Weil sieve: Proving non-existence of rational points on curves, in preparation.
- Nils Bruin and Michael Stoll, Deciding existence of rational points on curves: an experiment, Experiment. Math. 17 (2008), no. 2, 181–189. MR 2433884, DOI 10.1080/10586458.2008.10129031
- Nils Bruin and Michael Stoll, Electronic resources, 2008, http://www.cecm.sfu.ca/~nbruin/twocovdesc.
- J. W. S. Cassels, Lectures on elliptic curves, London Mathematical Society Student Texts, vol. 24, Cambridge University Press, Cambridge, 1991. MR 1144763, DOI 10.1017/CBO9781139172530
- Claude Chabauty, Sur les points rationnels des courbes algébriques de genre supérieur à l’unité, C. R. Acad. Sci. Paris 212 (1941), 882–885 (French). MR 4484
- C. Chevalley and A. Weil, Un théorème d’arithmétique sur les courbes algébriques, C. R. Acad. Sci. Paris 195 (1932), 570–572.
- Robert F. Coleman, Effective Chabauty, Duke Math. J. 52 (1985), no. 3, 765–770. MR 808103, DOI 10.1215/S0012-7094-85-05240-8
- E. V. Flynn, A flexible method for applying Chabauty’s theorem, Compositio Math. 105 (1997), no. 1, 79–94. MR 1436746, DOI 10.1023/A:1000111601294
- E. Victor Flynn and Joseph L. Wetherell, Finding rational points on bielliptic genus 2 curves, Manuscripta Math. 100 (1999), no. 4, 519–533. MR 1734798, DOI 10.1007/s002290050215
- J. R. Merriman, S. Siksek, and N. P. Smart, Explicit $4$-descents on an elliptic curve, Acta Arith. 77 (1996), no. 4, 385–404. MR 1414518, DOI 10.4064/aa-77-4-385-404
- Bjorn Poonen, Heuristics for the Brauer-Manin obstruction for curves, Experiment. Math. 15 (2006), no. 4, 415–420. MR 2293593, DOI 10.1080/10586458.2006.10128974
- Bjorn Poonen and Edward F. Schaefer, Explicit descent for Jacobians of cyclic covers of the projective line, J. Reine Angew. Math. 488 (1997), 141–188. MR 1465369
- Bjorn Poonen, Edward F. Schaefer, and Michael Stoll, Twists of $X(7)$ and primitive solutions to $x^2+y^3=z^7$, Duke Math. J. 137 (2007), no. 1, 103–158. MR 2309145, DOI 10.1215/S0012-7094-07-13714-1
- Bjorn Poonen and Michael Stoll, The Cassels-Tate pairing on polarized abelian varieties, Ann. of Math. (2) 150 (1999), no. 3, 1109–1149. MR 1740984, DOI 10.2307/121064
- Bjorn Poonen and Michael Stoll, A local-global principle for densities, Topics in number theory (University Park, PA, 1997) Math. Appl., vol. 467, Kluwer Acad. Publ., Dordrecht, 1999, pp. 241–244. MR 1691323
- Joseph H. Silverman, The arithmetic of elliptic curves, Graduate Texts in Mathematics, vol. 106, Springer-Verlag, New York, 1986. MR 817210, DOI 10.1007/978-1-4757-1920-8
- Sebastian Stamminger, Explicit $8$-descent on elliptic curves, International University Bremen, 2005, http://www.jacobs-university.de/research/dissertations/. (Ph.D. thesis).
- Michael Stoll, Implementing 2-descent for Jacobians of hyperelliptic curves, Acta Arith. 98 (2001), no. 3, 245–277. MR 1829626, DOI 10.4064/aa98-3-4
- Michael Stoll, Finite descent obstructions and rational points on curves, Algebra Number Theory 1 (2007), no. 4, 349–391. MR 2368954, DOI 10.2140/ant.2007.1.349
Bibliographic Information
- Nils Bruin
- Affiliation: Department of Mathematics, Simon Fraser University, Burnaby, BC, Canada V5A 1S6
- MR Author ID: 653028
- Email: nbruin@sfu.ca
- Michael Stoll
- Affiliation: Mathematisches Institut, Universität Bayreuth, 95440 Bayreuth, Germany
- Email: Michael.Stoll@uni-bayreuth.de
- Received by editor(s): March 31, 2008
- Received by editor(s) in revised form: October 21, 2008
- Published electronically: March 11, 2009
- Additional Notes: The research of the first author was supported by NSERC
- © Copyright 2009 American Mathematical Society
- Journal: Math. Comp. 78 (2009), 2347-2370
- MSC (2000): Primary 11G30; Secondary 14H40
- DOI: https://doi.org/10.1090/S0025-5718-09-02255-8
- MathSciNet review: 2521292