Approximation of stationary statistical properties of dissipative dynamical systems: Time discretization
HTML articles powered by AMS MathViewer
- by Xiaoming Wang;
- Math. Comp. 79 (2010), 259-280
- DOI: https://doi.org/10.1090/S0025-5718-09-02256-X
- Published electronically: April 20, 2009
- PDF | Request permission
Abstract:
We consider temporal approximation of stationary statistical properties of dissipative infinite-dimensional dynamical systems. We demonstrate that stationary statistical properties of the time discrete approximations, i.e., numerical scheme, converge to those of the underlying continuous dissipative infinite-dimensional dynamical system under three very natural assumptions as the time step approaches zero. The three conditions that are sufficient for the convergence of the stationary statistical properties are: (1) uniform dissipativity of the scheme in the sense that the union of the global attractors for the numerical approximations is pre-compact in the phase space; (2) convergence of the solutions of the numerical scheme to the solution of the continuous system on the unit time interval $[0,1]$ uniformly with respect to initial data from the union of the global attractors; (3) uniform continuity of the solutions to the continuous dynamical system on the unit time interval $[0,1]$ uniformly for initial data from the union of the global attractors. The convergence of the global attractors is established under weaker assumptions. An application to the infinite Prandtl number model for convection is discussed.References
- Patrick Billingsley, Weak convergence of measures: Applications in probability, Conference Board of the Mathematical Sciences Regional Conference Series in Applied Mathematics, No. 5, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1971. MR 310933
- Eric Cancès, Frédéric Legoll, and Gabriel Stoltz, Theoretical and numerical comparison of some sampling methods for molecular dynamics, M2AN Math. Model. Numer. Anal. 41 (2007), no. 2, 351–389. MR 2339633, DOI 10.1051/m2an:2007014
- S. Chandrasekhar, Hydrodynamic and hydromagnetic stability, International Series of Monographs on Physics, Clarendon Press, Oxford, 1961. MR 128226
- Wenfang Cheng and Xiaoming Wang, A uniformly dissipative scheme for stationary statistical properties of the infinite Prandtl number model, Appl. Math. Lett. 21 (2008), no. 12, 1281–1285. MR 2464380, DOI 10.1016/j.aml.2007.07.036
- Wenfang Cheng and Xiaoming Wang, A semi-implicit scheme for stationary statistical properties of the infinite Prandtl number model, SIAM J. Numer. Anal. 47 (2008/09), no. 1, 250–270. MR 2452860, DOI 10.1137/080713501
- C. Chiu, Q. Du, and T. Y. Li, Error estimates of the Markov finite approximation of the Frobenius-Perron operator, Nonlinear Anal. 19 (1992), no. 4, 291–308. MR 1178404, DOI 10.1016/0362-546X(92)90175-E
- Peter Constantin and Charles R. Doering, Infinite Prandtl number convection, J. Statist. Phys. 94 (1999), no. 1-2, 159–172. MR 1679670, DOI 10.1023/A:1004511312885
- Charles R. Doering, Felix Otto, and Maria G. Reznikoff, Bounds on vertical heat transport for infinite-Prandtl-number Rayleigh-Bénard convection, J. Fluid Mech. 560 (2006), 229–241. MR 2265709, DOI 10.1017/S0022112006000097
- Weinan E and Dong Li, The Andersen thermostat in molecular dynamics, Comm. Pure Appl. Math. 61 (2008), no. 1, 96–136. MR 2361305, DOI 10.1002/cpa.20198
- C. Foias, M. S. Jolly, I. G. Kevrekidis, and E. S. Titi, Dissipativity of numerical schemes, Nonlinearity 4 (1991), no. 3, 591–613. MR 1124326
- C. Foias, M. S. Jolly, I. G. Kevrekidis, and E. S. Titi, On some dissipative fully discrete nonlinear Galerkin schemes for the Kuramoto-Sivashinsky equation, Phys. Lett. A 186 (1994), no. 1-2, 87–96. MR 1267024, DOI 10.1016/0375-9601(94)90926-1
- C. Foias, O. Manley, R. Rosa, and R. Temam, Navier-Stokes equations and turbulence, Encyclopedia of Mathematics and its Applications, vol. 83, Cambridge University Press, Cambridge, 2001. MR 1855030, DOI 10.1017/CBO9780511546754
- T. Geveci, On the convergence of a time discretization scheme for the Navier-Stokes equations, Math. Comp. 53 (1989), no. 187, 43–53. MR 969488, DOI 10.1090/S0025-5718-1989-0969488-5
- Jack K. Hale, Asymptotic behavior of dissipative systems, Mathematical Surveys and Monographs, vol. 25, American Mathematical Society, Providence, RI, 1988. MR 941371, DOI 10.1090/surv/025
- John G. Heywood and Rolf Rannacher, Finite element approximation of the nonstationary Navier-Stokes problem. II. Stability of solutions and error estimates uniform in time, SIAM J. Numer. Anal. 23 (1986), no. 4, 750–777. MR 849281, DOI 10.1137/0723049
- Adrian T. Hill and Endre Süli, Approximation of the global attractor for the incompressible Navier-Stokes equations, IMA J. Numer. Anal. 20 (2000), no. 4, 633–667. MR 1795301, DOI 10.1093/imanum/20.4.633
- Don A. Jones, Andrew M. Stuart, and Edriss S. Titi, Persistence of invariant sets for dissipative evolution equations, J. Math. Anal. Appl. 219 (1998), no. 2, 479–502. MR 1606370, DOI 10.1006/jmaa.1997.5847
- Ning Ju, On the global stability of a temporal discretization scheme for the Navier-Stokes equations, IMA J. Numer. Anal. 22 (2002), no. 4, 577–597. MR 1936521, DOI 10.1093/imanum/22.4.577
- Kadanoff, L.P., Turbulent heat flow: Structures and scaling, Physics Today, 54, no. 8, pp. 34-39, 2001.
- Stig Larsson, The long-time behavior of finite-element approximations of solutions to semilinear parabolic problems, SIAM J. Numer. Anal. 26 (1989), no. 2, 348–365. MR 987394, DOI 10.1137/0726019
- Andrzej Lasota and Michael C. Mackey, Chaos, fractals, and noise, 2nd ed., Applied Mathematical Sciences, vol. 97, Springer-Verlag, New York, 1994. Stochastic aspects of dynamics. MR 1244104, DOI 10.1007/978-1-4612-4286-4
- Peter D. Lax, Functional analysis, Pure and Applied Mathematics (New York), Wiley-Interscience [John Wiley & Sons], New York, 2002. MR 1892228
- Andrew J. Majda and Xiaoming Wang, Non-linear dynamics and statistical theories for basic geophysical flows, Cambridge University Press, Cambridge, 2006. MR 2241372, DOI 10.1017/CBO9780511616778
- Monin, A.S.; Yaglom, A.M., Statistical fluid mechanics; mechanics of turbulence, English ed. updated, augmented and rev. by the authors. MIT Press, Cambridge, Mass., 1975.
- G. Raugel, Global attractors in partial differential equations, Handbook of dynamical systems, Vol. 2, North-Holland, Amsterdam, 2002, pp. 885–982. MR 1901068, DOI 10.1016/S1874-575X(02)80038-8
- Sebastian Reich, Backward error analysis for numerical integrators, SIAM J. Numer. Anal. 36 (1999), no. 5, 1549–1570. MR 1706731, DOI 10.1137/S0036142997329797
- Jie Shen, Convergence of approximate attractors for a fully discrete system for reaction-diffusion equations, Numer. Funct. Anal. Optim. 10 (1989), no. 11-12, 1213–1234 (1990). MR 1050711, DOI 10.1080/01630568908816354
- Jie Shen, Long time stability and convergence for fully discrete nonlinear Galerkin methods, Appl. Anal. 38 (1990), no. 4, 201–229. MR 1116181, DOI 10.1080/00036819008839963
- Hersir Sigurgeirsson and A. M. Stuart, Statistics from computations, Foundations of computational mathematics (Oxford, 1999) London Math. Soc. Lecture Note Ser., vol. 284, Cambridge Univ. Press, Cambridge, 2001, pp. 323–344. MR 1839148
- A. M. Stuart and A. R. Humphries, Dynamical systems and numerical analysis, Cambridge Monographs on Applied and Computational Mathematics, vol. 2, Cambridge University Press, Cambridge, 1996. MR 1402909
- Roger Temam, Navier-Stokes equations and nonlinear functional analysis, 2nd ed., CBMS-NSF Regional Conference Series in Applied Mathematics, vol. 66, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1995. MR 1318914, DOI 10.1137/1.9781611970050
- Roger Temam, Infinite-dimensional dynamical systems in mechanics and physics, 2nd ed., Applied Mathematical Sciences, vol. 68, Springer-Verlag, New York, 1997. MR 1441312, DOI 10.1007/978-1-4612-0645-3
- F. Tone and D. Wirosoetisno, On the long-time stability of the implicit Euler scheme for the two-dimensional Navier-Stokes equations, SIAM J. Numer. Anal. 44 (2006), no. 1, 29–40. MR 2217369, DOI 10.1137/040618527
- D. J. Tritton, Physical fluid dynamics, 2nd ed., Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1988. MR 1047471
- P. F. Tupper, Ergodicity and the numerical simulation of Hamiltonian systems, SIAM J. Appl. Dyn. Syst. 4 (2005), no. 3, 563–587. MR 2145198, DOI 10.1137/040603802
- Vishik, M.I.; Fursikov, A.V., Mathematical Problems of Statistical Hydromechanics. Kluwer Acad. Publishers, Dordrecht/Boston/London, 1988.
- Peter Walters, An introduction to ergodic theory, Graduate Texts in Mathematics, vol. 79, Springer-Verlag, New York-Berlin, 1982. MR 648108
- Xiaoming Wang, Infinite Prandtl number limit of Rayleigh-Bénard convection, Comm. Pure Appl. Math. 57 (2004), no. 10, 1265–1282. MR 2069723, DOI 10.1002/cpa.3047
- Xiaoming Wang, Stationary statistical properties of Rayleigh-Bénard convection at large Prandtl number, Comm. Pure Appl. Math. 61 (2008), no. 6, 789–815. MR 2400606, DOI 10.1002/cpa.20214
- Xiaoming Wang, Upper semi-continuity of stationary statistical properties of dissipative systems, Discrete Contin. Dyn. Syst. 23 (2009), no. 1-2, 521–540. MR 2449091, DOI 10.3934/dcds.2009.23.521
Bibliographic Information
- Xiaoming Wang
- Affiliation: Department of Mathematics, Florida State University, Tallahassee, Florida 32306 and School of Mathematics, Fudan University, Shanghai, China 200433
- Email: wxm@math.fsu.edu
- Received by editor(s): September 12, 2008
- Received by editor(s) in revised form: December 23, 2008
- Published electronically: April 20, 2009
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 79 (2010), 259-280
- MSC (2000): Primary 65P99, 37M25, 65M12, 37L40, 76F35, 76F20, 37L30, 37N10, 35Q35
- DOI: https://doi.org/10.1090/S0025-5718-09-02256-X
- MathSciNet review: 2552226