An adaptive edge element method with perfectly matched absorbing layers for wave scattering by biperiodic structures
Authors:
Gang Bao, Peijun Li and Haijun Wu
Journal:
Math. Comp. 79 (2010), 1-34
MSC (2000):
Primary 65N30, 78A45, 35Q60
DOI:
https://doi.org/10.1090/S0025-5718-09-02257-1
Published electronically:
May 7, 2009
MathSciNet review:
2552215
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: An edge element adaptive strategy with error control is developed for wave scattering by biperiodic structures. The unbounded computational domain is truncated to a bounded one by a perfectly matched layer (PML) technique. The PML parameters, such as the thickness of the layer and the medium properties, are determined through sharp a posteriori error estimates. Numerical experiments are presented to illustrate the competitive behavior of the proposed adaptive method.
- 1. Toufic Abboud, Formulation variationnelle des équations de Maxwell dans un réseau bipériodique de 𝑅³, C. R. Acad. Sci. Paris Sér. I Math. 317 (1993), no. 3, 245–248 (French, with English and French summaries). MR 1233420
- 2. Habib Ammari and Gang Bao, Maxwell’s equations in periodic chiral structures, Math. Nachr. 251 (2003), 3–18. MR 1960800, https://doi.org/10.1002/mana.200310026
- 3. H. Ammari and J.-C. Nédélec, Low-frequency electromagnetic scattering, SIAM J. Math. Anal. 31 (2000), no. 4, 836–861. MR 1752419, https://doi.org/10.1137/S0036141098343604
- 4. Douglas N. Arnold, Arup Mukherjee, and Luc Pouly, Locally adapted tetrahedral meshes using bisection, SIAM J. Sci. Comput. 22 (2000), no. 2, 431–448. MR 1780608, https://doi.org/10.1137/S1064827597323373
- 5. Ivo Babuška and A. K. Aziz, Survey lectures on the mathematical foundations of the finite element method, The mathematical foundations of the finite element method with applications to partial differential equations (Proc. Sympos., Univ. Maryland, Baltimore, Md., 1972) Academic Press, New York, 1972, pp. 1–359. With the collaboration of G. Fix and R. B. Kellogg. MR 0421106
- 6. I. Babuška and W. C. Rheinboldt, Error estimates for adaptive finite element computations, SIAM J. Numer. Anal. 15 (1978), no. 4, 736–754. MR 483395, https://doi.org/10.1137/0715049
- 7. Gang Bao, Variational approximation of Maxwell’s equations in biperiodic structures, SIAM J. Appl. Math. 57 (1997), no. 2, 364–381. MR 1438758, https://doi.org/10.1137/S0036139995279408
- 8. Gang Bao, Zhiming Chen, and Haijun Wu, Adaptive finite-element method for diffraction gratings, J. Opt. Soc. Amer. A 22 (2005), no. 6, 1106–1114. MR 2188104, https://doi.org/10.1364/JOSAA.22.001106
- 9. Gang Bao, Lawrence Cowsar, and Wen Masters (eds.), Mathematical modeling in optical science, Frontiers in Applied Mathematics, vol. 22, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2001. MR 1831328
- 10. Gang Bao and David C. Dobson, On the scattering by a biperiodic structure, Proc. Amer. Math. Soc. 128 (2000), no. 9, 2715–2723. MR 1694448, https://doi.org/10.1090/S0002-9939-00-05509-X
- 11. Gang Bao, David C. Dobson, and J. Allen Cox, Mathematical studies in rigorous grating theory, J. Opt. Soc. Amer. A 12 (1995), no. 5, 1029–1042. MR 1335399, https://doi.org/10.1364/JOSAA.12.001029
- 12. Gang Bao and Haijun Wu, Convergence analysis of the perfectly matched layer problems for time-harmonic Maxwell’s equations, SIAM J. Numer. Anal. 43 (2005), no. 5, 2121–2143. MR 2192334, https://doi.org/10.1137/040604315
- 13. Gang Bao and Aihui Zhou, Analysis of finite dimensional approximations to a class of partial differential equations, Math. Methods Appl. Sci. 27 (2004), no. 17, 2055–2066. MR 2099817, https://doi.org/10.1002/mma.539
- 14. Rudi Beck, Ralf Hiptmair, Ronald H. W. Hoppe, and Barbara Wohlmuth, Residual based a posteriori error estimators for eddy current computation, M2AN Math. Model. Numer. Anal. 34 (2000), no. 1, 159–182 (English, with English and French summaries). MR 1735971, https://doi.org/10.1051/m2an:2000136
- 15. Jean-Pierre Berenger, A perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys. 114 (1994), no. 2, 185–200. MR 1294924, https://doi.org/10.1006/jcph.1994.1159
- 16. Jean-Pierre Berenger, Three-dimensional perfectly matched layer for the absorption of electromagnetic waves, J. Comput. Phys. 127 (1996), no. 2, 363–379. MR 1412240, https://doi.org/10.1006/jcph.1996.0181
- 17. Peter Binev, Wolfgang Dahmen, and Ron DeVore, Adaptive finite element methods with convergence rates, Numer. Math. 97 (2004), no. 2, 219–268. MR 2050077, https://doi.org/10.1007/s00211-003-0492-7
- 18. James H. Bramble and Joseph E. Pasciak, Analysis of a finite PML approximation for the three dimensional time-harmonic Maxwell and acoustic scattering problems, Math. Comp. 76 (2007), no. 258, 597–614. MR 2291829, https://doi.org/10.1090/S0025-5718-06-01930-2
- 19. James H. Bramble and Joseph E. Pasciak, Analysis of a finite element PML approximation for the three dimensional time-harmonic Maxwell problem, Math. Comp. 77 (2008), no. 261, 1–10. MR 2353940, https://doi.org/10.1090/S0025-5718-07-02037-6
- 20. Yia-Chung Chang, Guangwei Li, Hanyou Chu, and Jon Opsal, Efficient finite-element, Green’s function approach for critical-dimension metrology of three-dimensional gratings on multilayer films, J. Opt. Soc. Amer. A 23 (2006), no. 3, 638–645. MR 2232900, https://doi.org/10.1364/JOSAA.23.000638
- 21. Junqing Chen and Zhiming Chen, An adaptive perfectly matched layer technique for 3-D time-harmonic electromagnetic scattering problems, Math. Comp. 77 (2008), no. 262, 673–698. MR 2373175, https://doi.org/10.1090/S0025-5718-07-02055-8
- 22. Zhiming Chen and Shibin Dai, On the efficiency of adaptive finite element methods for elliptic problems with discontinuous coefficients, SIAM J. Sci. Comput. 24 (2002), no. 2, 443–462. MR 1951050, https://doi.org/10.1137/S1064827501383713
- 23. Zhiming Chen and Xuezhe Liu, An adaptive perfectly matched layer technique for time-harmonic scattering problems, SIAM J. Numer. Anal. 43 (2005), no. 2, 645–671. MR 2177884, https://doi.org/10.1137/040610337
- 24. Zhiming Chen and Haijun Wu, An adaptive finite element method with perfectly matched absorbing layers for the wave scattering by periodic structures, SIAM J. Numer. Anal. 41 (2003), no. 3, 799–826. MR 2005183, https://doi.org/10.1137/S0036142902400901
- 25. F. Collino and P. B. Monk, Optimizing the perfectly matched layer, Comput. Methods Appl. Mech. Engrg. 164 (1998), no. 1-2, 157–171. Exterior problems of wave propagation (Boulder, CO, 1997; San Francisco, CA, 1997). MR 1662777, https://doi.org/10.1016/S0045-7825(98)00052-8
- 26. Martin Costabel and Monique Dauge, Maxwell and Lamé eigenvalues on polyhedra, Math. Methods Appl. Sci. 22 (1999), no. 3, 243–258. MR 1672271, https://doi.org/10.1002/(SICI)1099-1476(199902)22:3
- 27. David Dobson and Avner Friedman, The time-harmonic Maxwell equations in a doubly periodic structure, J. Math. Anal. Appl. 166 (1992), no. 2, 507–528. MR 1160941, https://doi.org/10.1016/0022-247X(92)90312-2
- 28. Willy Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal. 33 (1996), no. 3, 1106–1124. MR 1393904, https://doi.org/10.1137/0733054
- 29. R. E. Edwards, Fourier series. A modern introduction. Vol. 1, 2nd ed., Graduate Texts in Mathematics, vol. 64, Springer-Verlag, New York-Berlin, 1979. MR 545506
- 30. S.D. Gedney, An anisotropic perfectly matched layer absorbing medium for the truncation of FDTD lattices, IEEE Trans. Antennas Propagat. 44 (1996), 1630-1639.
- 31. Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR 851383
- 32. M. Lassas and E. Somersalo, On the existence and convergence of the solution of PML equations, Computing 60 (1998), no. 3, 229–241. MR 1621305, https://doi.org/10.1007/BF02684334
- 33. L. Li, New formulation of the Fourier modal method for crossed surface-relief gratings, J. Opt. Soc. Amer. A 14 (1997), 2758-2767.
- 34. Khamron Mekchay and Ricardo H. Nochetto, Convergence of adaptive finite element methods for general second order linear elliptic PDEs, SIAM J. Numer. Anal. 43 (2005), no. 5, 1803–1827. MR 2192319, https://doi.org/10.1137/04060929X
- 35. Peter Monk, A posteriori error indicators for Maxwell’s equations, J. Comput. Appl. Math. 100 (1998), no. 2, 173–190. MR 1659117, https://doi.org/10.1016/S0377-0427(98)00187-3
- 36. Peter Monk, Finite element methods for Maxwell’s equations, Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2003. MR 2059447
- 37. Peter Monk and Endre Süli, The adaptive computation of far-field patterns by a posteriori error estimation of linear functionals, SIAM J. Numer. Anal. 36 (1999), no. 1, 251–274. MR 1654563, https://doi.org/10.1137/S0036142997315172
- 38. Pedro Morin, Ricardo H. Nochetto, and Kunibert G. Siebert, Data oscillation and convergence of adaptive FEM, SIAM J. Numer. Anal. 38 (2000), no. 2, 466–488. MR 1770058, https://doi.org/10.1137/S0036142999360044
- 39. Pedro Morin, Ricardo H. Nochetto, and Kunibert G. Siebert, Convergence of adaptive finite element methods, SIAM Rev. 44 (2002), no. 4, 631–658 (2003). Revised reprint of “Data oscillation and convergence of adaptive FEM” [SIAM J. Numer. Anal. 38 (2000), no. 2, 466–488 (electronic); MR1770058 (2001g:65157)]. MR 1980447, https://doi.org/10.1137/S0036144502409093
- 40. J.-C. Nédélec, Mixed finite elements in 𝑅³, Numer. Math. 35 (1980), no. 3, 315–341. MR 592160, https://doi.org/10.1007/BF01396415
- 41. Roger Petit (ed.), Electromagnetic theory of gratings, Topics in Current Physics, vol. 22, Springer-Verlag, Berlin-New York, 1980. MR 609533
- 42. H.-J. Schmeisser and H. Triebel, Topics in Fourier analysis and function spaces, Mathematik und ihre Anwendungen in Physik und Technik [Mathematics and its Applications in Physics and Technology], vol. 42, Akademische Verlagsgesellschaft Geest & Portig K.-G., Leipzig, 1987. MR 900143
- 43. L. Ridgway Scott and Shangyou Zhang, Finite element interpolation of nonsmooth functions satisfying boundary conditions, Math. Comp. 54 (1990), no. 190, 483–493. MR 1011446, https://doi.org/10.1090/S0025-5718-1990-1011446-7
- 44. Rob Stevenson, Optimality of a standard adaptive finite element method, Found. Comput. Math. 7 (2007), no. 2, 245–269. MR 2324418, https://doi.org/10.1007/s10208-005-0183-0
- 45. F. Teixera and W. Chew, Systematic derivation of anisotropic PML absorbing media in cylindrical and spherical coordinates, IEEE microwave and guided wave letters 7 (1997), 371-373.
- 46. E. Turkel and A. Yefet, Absorbing PML boundary layers for wave-like equations, Appl. Numer. Math. 27 (1998), no. 4, 533–557. Absorbing boundary conditions. MR 1644675, https://doi.org/10.1016/S0168-9274(98)00026-9
- 47. R. Verfürth, A review of a posteriori error estimation and adaptive mesh refinement techniques, Teubner, Stuttgart, 1996.
- 48. Haijun Wu and Zhimin Zhang, Can we have superconvergent gradient recovery under adaptive meshes?, SIAM J. Numer. Anal. 45 (2007), no. 4, 1701–1722. MR 2338406, https://doi.org/10.1137/060661430
- 49. V. Yachin and K. Yasumoto, Method of integral functionals for electromagnetic wave scattering from a double-periodic magnetodielectric layer, J. Opt. Soc. Amer. A 24 (2007), 3606-3618.
Retrieve articles in Mathematics of Computation with MSC (2000): 65N30, 78A45, 35Q60
Retrieve articles in all journals with MSC (2000): 65N30, 78A45, 35Q60
Additional Information
Gang Bao
Affiliation:
Department of Mathematics, Michigan State University, East Lansing, Michigan 48824
Email:
bao@math.msu.edu
Peijun Li
Affiliation:
Department of Mathematics, Purdue University, West Lafayette, Indiana 47907
Email:
lipeijun@math.purdue.edu
Haijun Wu
Affiliation:
Department of Mathematics, Nanjing University, Jiangsu, 210093, China
Email:
hjw@nju.edu.cn
DOI:
https://doi.org/10.1090/S0025-5718-09-02257-1
Keywords:
Adaptivity,
perfectly matched layer,
\textit {a posteriori} error analysis,
cross gratings
Received by editor(s):
March 19, 2008
Received by editor(s) in revised form:
January 1, 2009
Published electronically:
May 7, 2009
Additional Notes:
The first author’s research was supported in part by the NSF grants DMS-0604790, CCF-0514078, CCF-0830161, and EAR-0724527, the ONR grants N000140210365 and N000140910384, the National Science Foundation of China grant 10428105.
The second author’s research was supported in part by the NSF EAR-0724656.
The third author’s research was supported by the national basic research program under grant 2005CB321701, by the program for new century excellent talents in university of China, and by the NSF of China grant 10401016.
Article copyright:
© Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.