Collocation methods for index 1 DAEs with a singularity of the first kind
HTML articles powered by AMS MathViewer
- by Othmar Koch, Roswitha März, Dirk Praetorius and Ewa Weinmüller;
- Math. Comp. 79 (2010), 281-304
- DOI: https://doi.org/10.1090/S0025-5718-09-02267-4
- Published electronically: June 25, 2009
- PDF | Request permission
Abstract:
We study the convergence behavior of collocation schemes applied to approximate solutions of BVPs in linear index 1 DAEs which exhibit a critical point at the left boundary. Such a critical point of the DAE causes a singularity within the inherent ODE system. We focus our attention on the case when the inherent ODE system is singular with a singularity of the first kind, apply polynomial collocation to the original DAE system and consider different choices of the collocation points such as equidistant, Gaussian or Radau points. We show that for a well-posed boundary value problem for DAEs having a sufficiently smooth solution, the global error of the collocation scheme converges with the order $O(h^s)$, where $s$ is the number of collocation points. Superconvergence cannot be expected in general due to the singularity, not even for the differential components of the solution. The theoretical results are illustrated by numerical experiments.References
- Uri M. Ascher and Raymond J. Spiteri, Collocation software for boundary value differential-algebraic equations, SIAM J. Sci. Comput. 15 (1994), no. 4, 938–952. MR 1278008, DOI 10.1137/0915056
- W. Auzinger, G. Kneisl, O. Koch, and E. Weinmüller. A solution routine for singular boundary value problems. Techn. Rep. ANUM Preprint Nr. 1/02, Inst. for Appl. Math. and Numer. Anal., Vienna Univ. of Technology, Austria, 2002. Available at http://www.math.tuwien.ac.at/˜inst115/preprints.htm.
- Winfried Auzinger, Günter Kneisl, Othmar Koch, and Ewa Weinmüller, A collocation code for singular boundary value problems in ordinary differential equations, Numer. Algorithms 33 (2003), no. 1-4, 27–39. International Conference on Numerical Algorithms, Vol. I (Marrakesh, 2001). MR 2005549, DOI 10.1023/A:1025531130904
- Winfried Auzinger, Othmar Koch, and Ewa Weinmüller, Efficient collocation schemes for singular boundary value problems, Numer. Algorithms 31 (2002), no. 1-4, 5–25. Numerical methods for ordinary differential equations (Auckland, 2001). MR 1950909, DOI 10.1023/A:1021151821275
- Winfried Auzinger, Othmar Koch, and Ewa Weinmüller, Analysis of a new error estimate for collocation methods applied to singular boundary value problems, SIAM J. Numer. Anal. 42 (2005), no. 6, 2366–2386. MR 2139397, DOI 10.1137/S0036142902418928
- P. B. Bailey, W. N. Everitt, and A. Zettl, Computing eigenvalues of singular Sturm-Liouville problems, Results Math. 20 (1991), no. 1-2, 391–423. MR 1122349, DOI 10.1007/BF03323182
- K. Balla and R. März, A unified approach to linear differential algebraic equations and their adjoints, Z. Anal. Anwendungen 21 (2002), no. 3, 783–802. MR 1929432, DOI 10.4171/ZAA/1108
- Katalin Balla and Roswitha März, Linear boundary value problems for differential algebraic equations, Miskolc Math. Notes 5 (2004), no. 1, 3–18. MR 2040972, DOI 10.18514/mmn.2004.20
- C. J. Budd and R. Kuske, Localized periodic patterns for the non-symmetric generalized Swift-Hohenberg equation, Phys. D 208 (2005), no. 1-2, 73–95. MR 2167908, DOI 10.1016/j.physd.2005.06.009
- C. J. Budd and J. F. Williams, Parabolic Monge-Ampère methods for blow-up problems in several spatial dimensions, J. Phys. A 39 (2006), no. 19, 5425–5444. MR 2220768, DOI 10.1088/0305-4470/39/19/S06
- A. Degenhardt. Collocation for transferable differential-algebraic equations. Technical Report 1992-1, Humboldt University Berlin, 1992.
- M. Drmota, R. Scheidl, H. Troger, and E. Weinmüller. On the imperfection sensitivity of complete spherical shells. Comp. Mech., 2:63–74, 1987.
- G.B. Froment and K.B. Bischoff. Chemical reactor analysis and design. John Wiley & Sons Inc., New York, 1990.
- S. Golub. Measures of restrictions in inward foreign direct investment in OECD countries. OECD Economics Dept. WP Nr. 357.
- E. Helpman, M.J. Melitz, and Yeaple. Export versus FDI with heterogeneous firms. Amer. Econ. Rev., 94(1):300–316, 2004.
- I. Higueras and R. März, Differential algebraic equations with properly stated leading terms, Comput. Math. Appl. 48 (2004), no. 1-2, 215–235. MR 2086798, DOI 10.1016/j.camwa.2003.05.010
- I. Higueras, R. März, and C. Tischendorf, Stability preserving integration of index-1 DAEs, Appl. Numer. Math. 45 (2003), no. 2-3, 175–200. MR 1967573, DOI 10.1016/S0168-9274(02)00215-5
- I. Higueras, R. März, and C. Tischendorf, Stability preserving integration of index-2 DAEs, Appl. Numer. Math. 45 (2003), no. 2-3, 201–229. MR 1967574, DOI 10.1016/S0168-9274(02)00216-7
- F. B. Hildebrand, Introduction to numerical analysis, 2nd ed., International Series in Pure and Applied Mathematics, McGraw-Hill Book Co., New York-Düsseldorf-Johannesburg, 1974. MR 347033
- Frank R. de Hoog and Richard Weiss, Difference methods for boundary value problems with a singularity of the first kind, SIAM J. Numer. Anal. 13 (1976), no. 5, 775–813. MR 440931, DOI 10.1137/0713063
- Frank R. de Hoog and Richard Weiss, Collocation methods for singular boundary value problems, SIAM J. Numer. Anal. 15 (1978), no. 1, 198–217. MR 468203, DOI 10.1137/0715013
- Frank de Hoog and Richard Weiss, The application of Runge-Kutta schemes to singular initial value problems, Math. Comp. 44 (1985), no. 169, 93–103. MR 771033, DOI 10.1090/S0025-5718-1985-0771033-0
- Todd Kapitula, Existence and stability of singular heteroclinic orbits for the Ginzburg-Landau equation, Nonlinearity 9 (1996), no. 3, 669–685. MR 1393152, DOI 10.1088/0951-7715/9/3/004
- B. Karabay. Foreign direct investment and host country policies: A rationale for using ownership restrictions. Technical report, University of Virginia, WP, 2005.
- Othmar Koch, Asymptotically correct error estimation for collocation methods applied to singular boundary value problems, Numer. Math. 101 (2005), no. 1, 143–164. MR 2194722, DOI 10.1007/s00211-005-0617-2
- Othmar Koch, Peter Kofler, and Ewa B. Weinmüller, Initial value problems for systems of ordinary first and second order differential equations with a singularity of the first kind, Analysis (Munich) 21 (2001), no. 4, 373–389. MR 1867622, DOI 10.1524/anly.2001.21.4.373
- O. Koch, R. März, D. Praetorius, and E.B. Weinmüller. Collocation methods for index-1 DAEs with a critical point. Mathematisches Forschungszentrum Oberwolfach, Report No. 18:81–84, 2006.
- O. Koch, R. März, D. Praetorius, and E.B. Weinmüller. Collocation for solving DAEs with singularities. Institute for Analysis and Scientific Computing, Report 32, Vienna University of Technology, 2007.
- Othmar Koch and Ewa B. Weinmüller, The convergence of shooting methods for singular boundary value problems, Math. Comp. 72 (2003), no. 241, 289–305. MR 1933822, DOI 10.1090/S0025-5718-01-01407-7
- Othmar Koch and Ewa Weinmüller, Analytical and numerical treatment of a singular initial value problem in avalanche modeling, Appl. Math. Comput. 148 (2004), no. 2, 561–570. MR 2015391, DOI 10.1016/S0096-3003(02)00919-0
- A. Kopelmann. Ein Kollokationsverfahren für überführbare Algebro-Differentialgleichungen. Preprint 1987-151, Humboldt University Berlin, 1987.
- Peter Kunkel and Volker Mehrmann, Differential-algebraic equations, EMS Textbooks in Mathematics, European Mathematical Society (EMS), Zürich, 2006. Analysis and numerical solution. MR 2225970, DOI 10.4171/017
- Peter Kunkel and Ronald Stöver, Symmetric collocation methods for linear differential-algebraic boundary value problems, Numer. Math. 91 (2002), no. 3, 475–501. MR 1907868, DOI 10.1007/s002110100315
- Roswitha März, Differential algebraic systems anew, Appl. Numer. Math. 42 (2002), no. 1-3, 315–335. Ninth Seminar on Numerical Solution of Differential and Differential-Algebraic Equations (Halle, 2000). MR 1921345, DOI 10.1016/S0168-9274(01)00158-1
- R. März, The index of linear differential algebraic equations with properly stated leading terms, Results Math. 42 (2002), no. 3-4, 308–338. MR 1946748, DOI 10.1007/BF03322858
- Roswitha März and Ricardo Riaza, Linear differential-algebraic equations with properly stated leading term: $A$-critical points, Math. Comput. Model. Dyn. Syst. 13 (2007), no. 3, 291–314. MR 2333507, DOI 10.1080/13873950600883428
- D. M. McClung and A. I. Mears. Dry-flowing avalanche run-up and run-out. J. Glaciol., 41(138):359–369, 1995.
- Gerald Moore, Geometric methods for computing invariant manifolds, Appl. Numer. Math. 17 (1995), no. 3, 319–331. Numerical methods for ordinary differential equations (Atlanta, GA, 1994). MR 1355567, DOI 10.1016/0168-9274(95)00037-U
- V.V. Ranade. Computational flow modeling for chemical engineering. Academic Press, San Diego, 2002.
- Ricardo Riaza, Differential-algebraic systems, World Scientific Publishing Co. Pte. Ltd., Hackensack, NJ, 2008. Analytical aspects and circuit applications. MR 2426820, DOI 10.1142/6746
- K. Sundmacher and U. Hoffmann. Multicomponent mass and energy transport on different length scales in a packed reactive distillation column for heterogeneously catalyzed fuel ether production. Chem. Eng. Sci., 49:4443–4464, 1994.
- Chin-Yu Yeh, A.-B. Chen, D.M. Nicholson, and W.H. Butler. Full-potential Korringa-Kohn-Rostoker band theory applied to the Mathieu potential. Phys. Rev. B, 42(17):10976–10982, 1990.
Bibliographic Information
- Othmar Koch
- Affiliation: Vienna University of Technology, Institute for Analysis and Scientific Computing, Wiedner Hauptstr. 8–10, A-1040 Wien, Austria
- Email: othmar@othmar-koch.org
- Roswitha März
- Affiliation: Humboldt-Universität of Berlin, Institute for Mathematics, Unter den Linden 6, D-10099 Berlin, Germany
- Email: maerz@mathematik.hu-berlin.de
- Dirk Praetorius
- Affiliation: Vienna University of Technology, Institute for Analysis and Scientific Computing, Wiedner Hauptstr. 8–10, A-1040 Wien, Austria
- MR Author ID: 702616
- ORCID: 0000-0002-1977-9830
- Email: dirk.praetorius@tuwien.ac.at
- Ewa Weinmüller
- Affiliation: Vienna University of Technology, Institute for Analysis and Scientific Computing, Wiedner Hauptstr. 8–10, A-1040 Wien, Austria
- Email: ewa.weinmueller@tuwien.ac.at
- Received by editor(s): April 29, 2008
- Received by editor(s) in revised form: March 4, 2009
- Published electronically: June 25, 2009
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 79 (2010), 281-304
- MSC (2000): Primary 65L80; Secondary 65L70
- DOI: https://doi.org/10.1090/S0025-5718-09-02267-4
- MathSciNet review: 2552227