The norm estimates for the $q$-Bernstein operator in the case $q>1$
HTML articles powered by AMS MathViewer
- by Heping Wang and Sofiya Ostrovska;
- Math. Comp. 79 (2010), 353-363
- DOI: https://doi.org/10.1090/S0025-5718-09-02273-X
- Published electronically: July 2, 2009
- PDF | Request permission
Abstract:
The $q$-Bernstein basis with $0<q<1$ emerges as an extension of the Bernstein basis corresponding to a stochastic process generalizing Bernoulli trials forming a totally positive system on $[0,1].$ In the case $q>1,$ the behavior of the $q$-Bernstein basic polynomials on $[0,1]$ combines the fast increase in magnitude with sign oscillations. This seriously complicates the study of $q$-Bernstein polynomials in the case of $q>1.$
The aim of this paper is to present norm estimates in $C[0,1]$ for the $q$-Bernstein basic polynomials and the $q$-Bernstein operator $B_{n,q}$ in the case $q>1.$ While for $0<q\leq 1,\;\;\|B_{n,q}\|=1$ for all $n\in \mathbb {N},$ in the case $q>1,$ the norm $\|B_{n,q}\|$ increases rather rapidly as $n\rightarrow \infty .$ We prove here that $\|B_{n,q}\|\sim C_{q} q^{n(n-1)/2}/n,\;\;n \rightarrow \infty \;\;\text {with }\;\;C_{q}=2 (q^{-2};q^{-2})_{\infty }/e.$ Such a fast growth of norms provides an explanation for the unpredictable behavior of $q$-Bernstein polynomials $(q>1)$ with respect to convergence.
References
- George E. Andrews, Richard Askey, and Ranjan Roy, Special functions, Encyclopedia of Mathematics and its Applications, vol. 71, Cambridge University Press, Cambridge, 1999. MR 1688958, DOI 10.1017/CBO9781107325937
- L. C. Biedenharn, The quantum group $\textrm {SU}_q(2)$ and a $q$-analogue of the boson operators, J. Phys. A 22 (1989), no. 18, L873–L878. MR 1015226
- Wolfgang Boehm and Andreas Müller, On de Casteljau’s algorithm, Comput. Aided Geom. Design 16 (1999), no. 7, 587–605. Dedicated to Paul de Faget de Casteljau. MR 1718051, DOI 10.1016/S0167-8396(99)00023-0
- L. Castellani and J. Wess (eds.), Quantum groups and their applications in physics, Proceedings of the International School of Physics “Enrico Fermi”, vol. 127, IOS Press, Amsterdam; Ohmsha Ltd., Tokyo, 1996. Lectures presented at the International School held in Varenna, June 28–July 8, 1994. MR 1415848
- Ch. A. Charalambides, The $q$-Bernstein basis as a $q$-binomial distribution, Journal of Statistical Planning and Inference (in press).
- Heinz H. Gonska, The rate of convergence of bounded linear processes on spaces of continuous functions, Automat. Comput. Appl. Math. 7 (1998), no. 1, 38–97 (1999). MR 1886377
- A. Il′inskii, A probabilistic approach to $q$-polynomial coefficients, Euler and Stirling numbers. I, Mat. Fiz. Anal. Geom. 11 (2004), no. 4, 434–448. MR 2114004
- Alexander Il′inskii and Sofiya Ostrovska, Convergence of generalized Bernstein polynomials, J. Approx. Theory 116 (2002), no. 1, 100–112. MR 1909014, DOI 10.1006/jath.2001.3657
- Si Cong Jing, The $q$-deformed binomial distribution and its asymptotic behaviour, J. Phys. A 27 (1994), no. 2, 493–499. MR 1267428
- Stanisław Lewanowicz and PawełWoźny, Dual generalized Bernstein basis, J. Approx. Theory 138 (2006), no. 2, 129–150. MR 2201155, DOI 10.1016/j.jat.2005.10.005
- Victor Lomonosov, A counterexample to the Bishop-Phelps theorem in complex spaces, Israel J. Math. 115 (2000), 25–28. MR 1749671, DOI 10.1007/BF02810578
- I. Ya. Novikov, Asymptotics of the roots of Bernstein polynomials used in the construction of modified Daubechies wavelets, Mat. Zametki 71 (2002), no. 2, 239–253 (Russian, with Russian summary); English transl., Math. Notes 71 (2002), no. 1-2, 217–229. MR 1900797, DOI 10.1023/A:1013959231555
- Sofiya Ostrovska, $q$-Bernstein polynomials and their iterates, J. Approx. Theory 123 (2003), no. 2, 232–255. MR 1990098, DOI 10.1016/S0021-9045(03)00104-7
- Sofiya Ostrovska, On the $q$-Bernstein polynomials, Adv. Stud. Contemp. Math. (Kyungshang) 11 (2005), no. 2, 193–204. MR 2169894
- Sofiya Ostrovska, The approximation of logarithmic function by $q$-Bernstein polynomials in the case $q>1$, Numer. Algorithms 44 (2007), no. 1, 69–82. MR 2322145, DOI 10.1007/s11075-007-9081-7
- M. I. Ostrovskiĭ, Regularizability of inverse linear operators in Banach spaces with a basis, Sibirsk. Mat. Zh. 33 (1992), no. 3, 123–130, 220 (Russian, with Russian summary); English transl., Siberian Math. J. 33 (1992), no. 3, 470–476 (1993). MR 1178464, DOI 10.1007/BF00970895
- V. S. Videnskii, On $q$-Bernstein polynomials and related positive linear operators, In: Problems of modern mathematics and mathematical education, Hertzen readings, St.-Petersburg, 2004, pp. 118-126 (Russian).
- Victor S. Videnskii, On some classes of $q$-parametric positive linear operators, Selected topics in complex analysis, Oper. Theory Adv. Appl., vol. 158, Birkhäuser, Basel, 2005, pp. 213–222. MR 2147598, DOI 10.1007/3-7643-7340-7_{1}5
- Wang Heping, Korovkin-type theorem and application, J. Approx. Theory 132 (2005), no. 2, 258–264. MR 2118520, DOI 10.1016/j.jat.2004.12.010
- Heping Wang and Fanjun Meng, The rate of convergence of $q$-Bernstein polynomials for $0<q<1$, J. Approx. Theory 136 (2005), no. 2, 151–158. MR 2171684, DOI 10.1016/j.jat.2005.07.001
- Heping Wang, Voronovskaya-type formulas and saturation of convergence for $q$-Bernstein polynomials for $0<q<1$, J. Approx. Theory 145 (2007), no. 2, 182–195. MR 2312464, DOI 10.1016/j.jat.2006.08.005
- Heping Wang and XueZhi Wu, Saturation of convergence for $q$-Bernstein polynomials in the case $q\geq 1$, J. Math. Anal. Appl. 337 (2008), no. 1, 744–750. MR 2356108, DOI 10.1016/j.jmaa.2007.04.014
Bibliographic Information
- Heping Wang
- Affiliation: School of Mathematical Sciences, Capital Normal University, Beijing 100048, People’s Republic of China
- Email: wanghp@yahoo.cn
- Sofiya Ostrovska
- Affiliation: Atilim University, Department of Mathematics, Incek 06836, Ankara, Turkey
- MR Author ID: 329775
- Email: ostrovskasofiya@yahoo.com
- Received by editor(s): December 12, 2007
- Received by editor(s) in revised form: November 7, 2008
- Published electronically: July 2, 2009
- Additional Notes: The first author was supported by National Natural Science Foundation of China (Project no. 10871132), Beijing Natural Science Foundation (1062004), and by a grant from the Key Programs of Beijing Municipal Education Commission (KZ200810028013).
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 79 (2010), 353-363
- MSC (2000): Primary 46E15, 26A12, 47A30; Secondary 26D05, 41A10
- DOI: https://doi.org/10.1090/S0025-5718-09-02273-X
- MathSciNet review: 2552230