Optimizing the double description method for normal surface enumeration
HTML articles powered by AMS MathViewer
- by Benjamin A. Burton;
- Math. Comp. 79 (2010), 453-484
- DOI: https://doi.org/10.1090/S0025-5718-09-02282-0
- Published electronically: July 14, 2009
- PDF | Request permission
Abstract:
Many key algorithms in 3-manifold topology involve the enumeration of normal surfaces, which is based upon the double description method for finding the vertices of a convex polytope. Typically we are only interested in a small subset of these vertices, thus opening the way for substantial optimization. Here we give an account of the vertex enumeration problem as it applies to normal surfaces and present new optimizations that yield strong improvements in both running time and memory consumption. The resulting algorithms are tested using the freely available software package Regina.References
- David Avis, A revised implementation of the reverse search vertex enumeration algorithm, Polytopes—combinatorics and computation (Oberwolfach, 1997) DMV Sem., vol. 29, Birkhäuser, Basel, 2000, pp. 177–198. MR 1785299
- David Avis, David Bremner, and Raimund Seidel, How good are convex hull algorithms?, Comput. Geom. 7 (1997), no. 5-6, 265–301. 11th ACM Symposium on Computational Geometry (Vancouver, BC, 1995). MR 1447243, DOI 10.1016/S0925-7721(96)00023-5
- David Avis and Komei Fukuda, A pivoting algorithm for convex hulls and vertex enumeration of arrangements and polyhedra, Discrete Comput. Geom. 8 (1992), no. 3, 295–313. ACM Symposium on Computational Geometry (North Conway, NH, 1991). MR 1174359, DOI 10.1007/BF02293050
- Benjamin A. Burton, Regina: Normal surface and $3$-manifold topology software, http://regina.sourceforge.net/, 1999–2009.
- Benjamin A. Burton, Introducing Regina, the 3-manifold topology software, Experiment. Math. 13 (2004), no. 3, 267–272. MR 2103324
- Benjamin A. Burton, Enumeration of non-orientable 3-manifolds using face-pairing graphs and union-find, Discrete Comput. Geom. 38 (2007), no. 3, 527–571. MR 2352707, DOI 10.1007/s00454-007-1307-x
- —, Extreme cases in normal surface enumeration, In preparation, 2009.
- Patrick J. Callahan, Martin V. Hildebrand, and Jeffrey R. Weeks, A census of cusped hyperbolic $3$-manifolds, Math. Comp. 68 (1999), no. 225, 321–332. With microfiche supplement. MR 1620219, DOI 10.1090/S0025-5718-99-01036-4
- Marc Culler and Nathan Dunfield, FXrays: Extremal ray enumeration software, http://www.math.uic.edu/˜t3m/, 2002–2003.
- Ulrich Drepper, What every programmer should know about memory, http://people.redhat.com/drepper/cpumemory.pdf, November 2007.
- M. E. Dyer, The complexity of vertex enumeration methods, Math. Oper. Res. 8 (1983), no. 3, 381–402. MR 716120, DOI 10.1287/moor.8.3.381
- Komei Fukuda and Alain Prodon, Double description method revisited, Combinatorics and computer science (Brest, 1995) Lecture Notes in Comput. Sci., vol. 1120, Springer, Berlin, 1996, pp. 91–111. MR 1448924, DOI 10.1007/3-540-61576-8_{7}7
- Wolfgang Haken, Theorie der Normalflächen, Acta Math. 105 (1961), 245–375 (German). MR 141106, DOI 10.1007/BF02559591
- Wolfgang Haken, Über das Homöomorphieproblem der 3-Mannigfaltigkeiten. I, Math. Z. 80 (1962), 89–120 (German). MR 160196, DOI 10.1007/BF01162369
- Joel Hass, Jeffrey C. Lagarias, and Nicholas Pippenger, The computational complexity of knot and link problems, J. ACM 46 (1999), no. 2, 185–211. MR 1693203, DOI 10.1145/301970.301971
- Geoffrey Hemion, The classification of knots and $3$-dimensional spaces, Oxford Science Publications, The Clarendon Press, Oxford University Press, New York, 1992. MR 1211184
- Craig D. Hodgson and Jeffrey R. Weeks, Symmetries, isometries and length spectra of closed hyperbolic three-manifolds, Experiment. Math. 3 (1994), no. 4, 261–274. MR 1341719
- William Jaco, David Letscher, and J. Hyam Rubinstein, Algorithms for essential surfaces in 3-manifolds, Topology and geometry: commemorating SISTAG, Contemp. Math., vol. 314, Amer. Math. Soc., Providence, RI, 2002, pp. 107–124. MR 1941626, DOI 10.1090/conm/314/05426
- William Jaco and Ulrich Oertel, An algorithm to decide if a $3$-manifold is a Haken manifold, Topology 23 (1984), no. 2, 195–209. MR 744850, DOI 10.1016/0040-9383(84)90039-9
- William Jaco and J. Hyam Rubinstein, $0$-efficient triangulations of 3-manifolds, J. Differential Geom. 65 (2003), no. 1, 61–168. MR 2057531
- William Jaco, J. Hyam Rubinstein, and Stephan Tillmann, Coverings and minimal triangulations of $3$-manifolds, Preprint, arXiv:0903.0112, February 2009.
- William Jaco and Jeffrey L. Tollefson, Algorithms for the complete decomposition of a closed $3$-manifold, Illinois J. Math. 39 (1995), no. 3, 358–406. MR 1339832
- Ensil Kang and J. Hyam Rubinstein, Ideal triangulations of 3-manifolds. I. Spun normal surface theory, Proceedings of the Casson Fest, Geom. Topol. Monogr., vol. 7, Geom. Topol. Publ., Coventry, 2004, pp. 235–265. MR 2172486, DOI 10.2140/gtm.2004.7.235
- Leonid Khachiyan, Endre Boros, Konrad Borys, Khaled Elbassioni, and Vladimir Gurvich, Generating all vertices of a polyhedron is hard, Discrete Comput. Geom. 39 (2008), no. 1-3, 174–190. MR 2383757, DOI 10.1007/s00454-008-9050-5
- Hellmuth Kneser, Geschlossene Flächen in dreidimensionalen Mannigfaltigkeiten, Jahresbericht der Deut. Math. Verein. 38 (1929), 248–260.
- Sergei V. Matveev, Tables of $3$-manifolds up to complexity $6$, Max-Planck-Institut für Mathematik Preprint Series (1998), no. 67, available from http://www.mpim-bonn.mpg.de/html/preprints/preprints.html.
- P. McMullen, The maximum numbers of faces of a convex polytope, Mathematika 17 (1970), 179–184. MR 283691, DOI 10.1112/S0025579300002850
- T. S. Motzkin, H. Raiffa, G. L. Thompson, and R. M. Thrall, The double description method, Contributions to the theory of games, vol. 2, Ann. of Math. Stud., no. 28, Princeton Univ. Press, Princeton, NJ, 1953, pp. 51–73. MR 60202
- Joachim H. Rubinstein, An algorithm to recognize the $3$-sphere, Proceedings of the International Congress of Mathematicians, Vol. 1, 2 (Zürich, 1994) Birkhäuser, Basel, 1995, pp. 601–611. MR 1403961
- J. H. Rubinstein, Polyhedral minimal surfaces, Heegaard splittings and decision problems for $3$-dimensional manifolds, Geometric topology (Athens, GA, 1993) AMS/IP Stud. Adv. Math., vol. 2, Amer. Math. Soc., Providence, RI, 1997, pp. 1–20. MR 1470718, DOI 10.1090/amsip/002.1/01
- Abigail Thompson, Thin position and the recognition problem for $S^3$, Math. Res. Lett. 1 (1994), no. 5, 613–630. MR 1295555, DOI 10.4310/MRL.1994.v1.n5.a9
- Stephan Tillmann, Normal surfaces in topologically finite 3-manifolds, Enseign. Math. (2) 54 (2008), no. 3-4, 329–380. MR 2478091
- Jeffrey L. Tollefson, Normal surface $Q$-theory, Pacific J. Math. 183 (1998), no. 2, 359–374. MR 1625962, DOI 10.2140/pjm.1998.183.359
- Henry S. Warren, Jr., Hacker’s delight, Addison-Wesley, 2002.
Bibliographic Information
- Benjamin A. Burton
- Affiliation: Department of Mathematics, SMGS, RMIT University, GPO Box 2476V, Melbourne, VIC 3001, Australia
- MR Author ID: 739103
- Email: bab@debian.org
- Received by editor(s): August 29, 2008
- Published electronically: July 14, 2009
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 79 (2010), 453-484
- MSC (2000): Primary 52B55; Secondary 57N10, 57N35
- DOI: https://doi.org/10.1090/S0025-5718-09-02282-0
- MathSciNet review: 2552235