A numerical method for fractal conservation laws
HTML articles powered by AMS MathViewer
- by Jérôme Droniou;
- Math. Comp. 79 (2010), 95-124
- DOI: https://doi.org/10.1090/S0025-5718-09-02293-5
- Published electronically: July 29, 2009
- PDF | Request permission
Abstract:
We consider a fractal scalar conservation law, that is to say, a conservation law modified by a fractional power of the Laplace operator, and we propose a numerical method to approximate its solutions. We make a theoretical study of the method, proving in the case of an initial data belonging to $L^\infty \cap BV$ that the approximate solutions converge in $L^\infty$ weak-$*$ and in $L^p$ strong for $p<\infty$, and we give numerical results showing the efficiency of the scheme and illustrating qualitative properties of the solution to the fractal conservation law.References
- Nathaël Alibaud, Entropy formulation for fractal conservation laws, J. Evol. Equ. 7 (2007), no. 1, 145–175. MR 2305729, DOI 10.1007/s00028-006-0253-z
- Alibaud N., Azerad P. and Isebe D., A non-monotone nonlocal conservation law for dune morphodynamics, submitted for publication.
- Nathaël Alibaud, Jérôme Droniou, and Julien Vovelle, Occurrence and non-appearance of shocks in fractal Burgers equations, J. Hyperbolic Differ. Equ. 4 (2007), no. 3, 479–499. MR 2339805, DOI 10.1142/S0219891607001227
- Jean-Pierre Aubin, Un théorème de compacité, C. R. Acad. Sci. Paris 256 (1963), 5042–5044 (French). MR 152860
- Olivier Alvarez, Philippe Hoch, Yann Le Bouar, and Régis Monneau, Dislocation dynamics: short-time existence and uniqueness of the solution, Arch. Ration. Mech. Anal. 181 (2006), no. 3, 449–504. MR 2231781, DOI 10.1007/s00205-006-0418-5
- Piotr Biler, Tadahisa Funaki, and Wojbor A. Woyczynski, Fractal Burgers equations, J. Differential Equations 148 (1998), no. 1, 9–46. MR 1637513, DOI 10.1006/jdeq.1998.3458
- Piotr Biler, Grzegorz Karch, and Wojbor A. Woyczyński, Asymptotics for conservation laws involving Lévy diffusion generators, Studia Math. 148 (2001), no. 2, 171–192. MR 1881259, DOI 10.4064/sm148-2-5
- Piotr Biler, Grzegorz Karch, and Wojbor A. Woyczyński, Critical nonlinearity exponent and self-similar asymptotics for Lévy conservation laws, Ann. Inst. H. Poincaré C Anal. Non Linéaire 18 (2001), no. 5, 613–637. MR 1849690, DOI 10.1016/S0294-1449(01)00080-4
- Jean-Michel Bony, Philippe Courrège, and Pierre Priouret, Semi-groupes de Feller sur une variété à bord compacte et problèmes aux limites intégro-différentiels du second ordre donnant lieu au principe du maximum, Ann. Inst. Fourier (Grenoble) 18 (1968), no. fasc. 2, 369–521 (1969) (French). MR 245085
- Robert Eymard, Thierry Gallouët, and Raphaèle Herbin, Finite volume methods, Handbook of numerical analysis, Vol. VII, Handb. Numer. Anal., VII, North-Holland, Amsterdam, 2000, pp. 713–1020. MR 1804748, DOI 10.1016/S1570-8659(00)07005-8
- Claire Chainais-Hillairet and Jérôme Droniou, Convergence analysis of a mixed finite volume scheme for an elliptic-parabolic system modeling miscible fluid flows in porous media, SIAM J. Numer. Anal. 45 (2007), no. 5, 2228–2258. MR 2346377, DOI 10.1137/060657236
- Raymond H. Chan and Michael K. Ng, Conjugate gradient methods for Toeplitz systems, SIAM Rev. 38 (1996), no. 3, 427–482. MR 1409592, DOI 10.1137/S0036144594276474
- Clavin P., Instabilities and nonlinear patterns of overdriven detonations in gases, H. Berestycki and Y. Pomeau (eds.), Nonlinear PDE’s in Condensed Matter and Reactive Flows, Kluwer (2002), 49-97.
- J. Droniou, T. Gallouet, and J. Vovelle, Global solution and smoothing effect for a non-local regularization of a hyperbolic equation, J. Evol. Equ. 3 (2003), no. 3, 499–521. Dedicated to Philippe Bénilan. MR 2019032, DOI 10.1007/s00028-003-0503-1
- Jérôme Droniou and Cyril Imbert, Fractal first-order partial differential equations, Arch. Ration. Mech. Anal. 182 (2006), no. 2, 299–331. MR 2259335, DOI 10.1007/s00205-006-0429-2
- Ghorbel A. and Monneau R., Well-posedness and numerical analysis of a one-dimensional non-local transport equation modelling dislocations dynamics, submitted for publication.
- Edwige Godlewski and Pierre-Arnaud Raviart, Numerical approximation of hyperbolic systems of conservation laws, Applied Mathematical Sciences, vol. 118, Springer-Verlag, New York, 1996. MR 1410987, DOI 10.1007/978-1-4612-0713-9
- S. N. Kružkov, First order quasilinear equations with several independent variables, Mat. Sb. (N.S.) 81(123) (1970), 228–255 (Russian). MR 267257
- B. Jourdain, Probabilistic approximation via spatial derivation of some nonlinear parabolic evolution equations, Monte Carlo and quasi-Monte Carlo methods 2004, Springer, Berlin, 2006, pp. 197–216. MR 2208710, DOI 10.1007/3-540-31186-6_{1}3
- Benjamin Jourdain, Sylvie Méléard, and Wojbor A. Woyczynski, Probabilistic approximation and inviscid limits for one-dimensional fractional conservation laws, Bernoulli 11 (2005), no. 4, 689–714. MR 2158256, DOI 10.3150/bj/1126126765
- Jacques Simon, Compact sets in the space $L^p(0,T;B)$, Ann. Mat. Pura Appl. (4) 146 (1987), 65–96. MR 916688, DOI 10.1007/BF01762360
- S. Salapaka, A. Peirce, and M. Dahleh, Analysis of a circulant based preconditioner for a class of lower rank extracted systems, Numer. Linear Algebra Appl. 12 (2005), no. 1, 9–32. MR 2114602, DOI 10.1002/nla.390
- Halil Mete Soner, Optimal control with state-space constraint. II, SIAM J. Control Optim. 24 (1986), no. 6, 1110–1122. MR 861089, DOI 10.1137/0324067
- Dan Stanescu, Dongjin Kim, and Wojbor A. Woyczynski, Numerical study of interacting particles approximation for integro-differential equations, J. Comput. Phys. 206 (2005), no. 2, 706–726. MR 2143331, DOI 10.1016/j.jcp.2004.12.023
- Charles Van Loan, Computational frameworks for the fast Fourier transform, Frontiers in Applied Mathematics, vol. 10, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1992. MR 1153025, DOI 10.1137/1.9781611970999
- Wojbor A. Woyczyński, Lévy processes in the physical sciences, Lévy processes, Birkhäuser Boston, Boston, MA, 2001, pp. 241–266. MR 1833700
Bibliographic Information
- Jérôme Droniou
- Affiliation: Université Montpellier 2, Institut de Mathématiques et de Modélisation de Montpellier, CC 051, Place Eugène Bataillon, 34095 Montpellier cedex 5, France
- MR Author ID: 655312
- Email: droniou@math.univ-montp2.fr
- Received by editor(s): April 25, 2009
- Received by editor(s) in revised form: March 23, 2009
- Published electronically: July 29, 2009
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 79 (2010), 95-124
- MSC (2000): Primary 65M12, 35L65, 35S10, 45K05
- DOI: https://doi.org/10.1090/S0025-5718-09-02293-5
- MathSciNet review: 2552219