On interpolation by Planar cubic pythagorean-hodograph spline curves
Authors:
Gasper Jaklic, Jernej Kozak, Marjeta Krajnc, Vito Vitrih and Emil Zagar
Journal:
Math. Comp. 79 (2010), 305-326
MSC (2000):
Primary 41A05, 41A15, 41A25, 41A30, 65D05, 65D07, 65D17; Secondary 65D10
DOI:
https://doi.org/10.1090/S0025-5718-09-02298-4
Published electronically:
July 29, 2009
MathSciNet review:
2552228
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper, the geometric interpolation of planar data points and boundary tangent directions by a cubic Pythagorean-hodograph (PH) spline curve is studied. It is shown that such an interpolant exists under some natural assumptions on the data. The construction of the spline is based upon the solution of a tridiagonal system of nonlinear equations. The asymptotic approximation order 4 is confirmed.
- 1. Gudrun Albrecht and Rida T. Farouki, Construction of 𝐶² Pythagorean-hodograph interpolating splines by the homotopy method, Adv. Comput. Math. 5 (1996), no. 4, 417–442. MR 1414289, https://doi.org/10.1007/BF02124754
- 2. Carl de Boor, A practical guide to splines, Revised edition, Applied Mathematical Sciences, vol. 27, Springer-Verlag, New York, 2001. MR 1900298
- 3. Rida T. Farouki, The conformal map 𝑧→𝑧² of the hodograph plane, Comput. Aided Geom. Design 11 (1994), no. 4, 363–390. MR 1287495, https://doi.org/10.1016/0167-8396(94)90204-6
- 4. Rida T. Farouki, Pythagorean-hodograph curves: algebra and geometry inseparable, Geometry and Computing, vol. 1, Springer, Berlin, 2008. MR 2365013
- 5. Rida T. Farouki, Bethany K. Kuspa, Carla Manni, and Alessandra Sestini, Efficient solution of the complex quadratic tridiagonal system for 𝐶² PH quintic splines, Numer. Algorithms 27 (2001), no. 1, 35–60. MR 1847983, https://doi.org/10.1023/A:1016621116240
- 6. Rida T. Farouki, Carla Manni, and Alessandra Sestini, Shape-preserving interpolation by 𝐺¹ and 𝐺² PH quintic splines, IMA J. Numer. Anal. 23 (2003), no. 2, 175–195. MR 1974222, https://doi.org/10.1093/imanum/23.2.175
- 7. R. T. Farouki and C. A. Neff, Hermite interpolation by Pythagorean hodograph quintics, Math. Comp. 64 (1995), no. 212, 1589–1609. MR 1308452, https://doi.org/10.1090/S0025-5718-1995-1308452-6
- 8. R. T. Farouki and T. Sakkalis, Pythagorean hodographs, IBM J. Res. Develop. 34 (1990), no. 5, 736–752. MR 1084084, https://doi.org/10.1147/rd.345.0736
- 9. Yu Yu Feng and Jernej Kozak, On 𝐺² continuous cubic spline interpolation, BIT 37 (1997), no. 2, 312–332. MR 1450963, https://doi.org/10.1007/BF02510215
- 10. Gašper Jaklič, Jernej Kozak, Marjeta Krajnc, Vito Vitrih, and Emil Žagar, Geometric Lagrange interpolation by planar cubic Pythagorean-hodograph curves, Comput. Aided Geom. Design 25 (2008), no. 9, 720–728. MR 2468201, https://doi.org/10.1016/j.cagd.2008.07.006
- 11. B. Jüttler, Hermite interpolation by Pythagorean hodograph curves of degree seven, Math. Comp. 70 (2001), no. 235, 1089–1111. MR 1826577, https://doi.org/10.1090/S0025-5718-00-01288-6
- 12. D. S. Meek and D. J. Walton, Geometric Hermite interpolation with Tschirnhausen cubics, J. Comput. Appl. Math. 81 (1997), no. 2, 299–309. MR 1459031, https://doi.org/10.1016/S0377-0427(97)00066-6
- 13. D. S. Meek and D. J. Walton, Hermite interpolation with Tschirnhausen cubic spirals, Comput. Aided Geom. Design 14 (1997), no. 7, 619–635. MR 1467315, https://doi.org/10.1016/S0167-8396(96)00050-7
- 14. Francesca Pelosi, Maria Lucia Sampoli, Rida T. Farouki, and Carla Manni, A control polygon scheme for design of planar 𝐶² PH quintic spline curves, Comput. Aided Geom. Design 24 (2007), no. 1, 28–52. MR 2286365, https://doi.org/10.1016/j.cagd.2006.09.005
- 15. Zbyněk Šír and Bert Jüttler, Euclidean and Minkowski Pythagorean hodograph curves over planar cubics, Comput. Aided Geom. Design 22 (2005), no. 8, 753–770. MR 2173576, https://doi.org/10.1016/j.cagd.2005.03.002
Retrieve articles in Mathematics of Computation with MSC (2000): 41A05, 41A15, 41A25, 41A30, 65D05, 65D07, 65D17, 65D10
Retrieve articles in all journals with MSC (2000): 41A05, 41A15, 41A25, 41A30, 65D05, 65D07, 65D17, 65D10
Additional Information
Gasper Jaklic
Affiliation:
FMF, University of Ljubljana, Slovenia and PINT, University of Primorska, Koper, Slovenia
Address at time of publication:
Jadranska 19, 1000 Ljubljana, Slovenia
Email:
gasper.jaklic@fmf.uni-lj.si
Jernej Kozak
Affiliation:
FMF and IMFM, University of Ljubljana, Slovenia
Address at time of publication:
Jadranska 19, 1000 Ljubljana, Slovenia
Email:
jernej.kozak@fmf.uni-lj.si
Marjeta Krajnc
Affiliation:
IMFM, University of Ljubljana, Slovenia
Address at time of publication:
Jadranska 19, 1000 Ljubljana, Slovenia
Email:
marjetka.krajnc@fmf.uni-lj.si
Vito Vitrih
Affiliation:
PINT, University of Primorska, Koper, Slovenia
Address at time of publication:
Muzejski trg 2, 6000 Koper, Slovenia
Email:
vito.vitrih@upr.si
Emil Zagar
Affiliation:
FMF and IMFM, University of Ljubljana, Slovenia
Address at time of publication:
Jadranska 19, 1000 Ljubljana, Slovenia
Email:
emil.zagar@fmf.uni-lj.si
DOI:
https://doi.org/10.1090/S0025-5718-09-02298-4
Received by editor(s):
June 6, 2008
Received by editor(s) in revised form:
March 25, 2009
Published electronically:
July 29, 2009
Article copyright:
© Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.