On the numerical evaluation of Fredholm determinants
Author:
Folkmar Bornemann
Journal:
Math. Comp. 79 (2010), 871-915
MSC (2000):
Primary 65R20, 65F40; Secondary 47G10, 15A52
DOI:
https://doi.org/10.1090/S0025-5718-09-02280-7
Published electronically:
September 24, 2009
MathSciNet review:
2600548
Full-text PDF
Abstract | References | Similar Articles | Additional Information
Abstract: Some significant quantities in mathematics and physics are most naturally expressed as the Fredholm determinant of an integral operator, most notably many of the distribution functions in random matrix theory. Though their numerical values are of interest, there is no systematic numerical treatment of Fredholm determinants to be found in the literature. Instead, the few numerical evaluations that are available rely on eigenfunction expansions of the operator, if expressible in terms of special functions, or on alternative, numerically more straightforwardly accessible analytic expressions, e.g., in terms of Painlevé transcendents, that have masterfully been derived in some cases. In this paper we close the gap in the literature by studying projection methods and, above all, a simple, easily implementable, general method for the numerical evaluation of Fredholm determinants that is derived from the classical Nyström method for the solution of Fredholm equations of the second kind. Using Gauss-Legendre or Clenshaw-Curtis as the underlying quadrature rule, we prove that the approximation error essentially behaves like the quadrature error for the sections of the kernel. In particular, we get exponential convergence for analytic kernels, which are typical in random matrix theory. The application of the method to the distribution functions of the Gaussian unitary ensemble (GUE), in the bulk scaling limit and the edge scaling limit, is discussed in detail. After extending the method to systems of integral operators, we evaluate the two-point correlation functions of the more recently studied Airy and Airy
processes.
- Mark J. Ablowitz and Athanassios S. Fokas, Complex variables: introduction and applications, 2nd ed., Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 2003. MR 1989049
- Mark Adler and Pierre van Moerbeke, PDEs for the joint distributions of the Dyson, Airy and sine processes, Ann. Probab. 33 (2005), no. 4, 1326–1361. MR 2150191, https://doi.org/10.1214/009117905000000107
- Sergio Albeverio and Raphael Höegh-Krohn, Oscillatory integrals and the method of stationary phase in infinitely many dimensions, with applications to the classical limit of quantum mechanics. I, Invent. Math. 40 (1977), no. 1, 59–106. MR 0474436, https://doi.org/10.1007/BF01389861
- Sheldon Axler, Down with determinants!, Amer. Math. Monthly 102 (1995), no. 2, 139–154. MR 1315593, https://doi.org/10.2307/2975348
- Sheldon Axler, Linear algebra done right, 2nd ed., Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1997. MR 1482226
- Christopher T. H. Baker, The numerical treatment of integral equations, Clarendon Press, Oxford, 1977. Monographs on Numerical Analysis. MR 0467215
- Garrett Birkhoff (ed.), A source book in classical analysis, Harvard University Press, Cambridge, Mass., 1973. With the assistance of Uta Merzbach. MR 0469612
- Bornemann, F.: 2009, Asymptotic independence of the extreme eigenvalues of GUE, arXiv:0902.3870.
- Folkmar Bornemann, Patrik L. Ferrari, and Michael Prähofer, The 𝐴𝑖𝑟𝑦₁ process is not the limit of the largest eigenvalue in GOE matrix diffusion, J. Stat. Phys. 133 (2008), no. 3, 405–415. MR 2448629, https://doi.org/10.1007/s10955-008-9621-0
- Alexei Borodin, Patrik L. Ferrari, Michael Prähofer, and Tomohiro Sasamoto, Fluctuation properties of the TASEP with periodic initial configuration, J. Stat. Phys. 129 (2007), no. 5-6, 1055–1080. MR 2363389, https://doi.org/10.1007/s10955-007-9383-0
- Torsten Carleman, Über die Fourierkoeffizienten einer stetigen Funktion, Acta Math. 41 (1916), no. 1, 377–384 (German). Aus einem Brief an Herrn A. Wiman. MR 1555157, https://doi.org/10.1007/BF02422951
- T. Carleman, Zur Theorie der linearen Integralgleichungen, Math. Z. 9 (1921), no. 3-4, 196–217 (German). MR 1544464, https://doi.org/10.1007/BF01279029
- E. W. Cheney, Introduction to approximation theory, AMS Chelsea Publishing, Providence, RI, 1998. Reprint of the second (1982) edition. MR 1656150
- R. Courant and D. Hilbert, Methods of mathematical physics. Vol. I, Interscience Publishers, Inc., New York, N.Y., 1953. MR 0065391
- Philip J. Davis and Philip Rabinowitz, Methods of numerical integration, 2nd ed., Computer Science and Applied Mathematics, Academic Press, Inc., Orlando, FL, 1984. MR 760629
- P. A. Deift, Orthogonal polynomials and random matrices: a Riemann-Hilbert approach, Courant Lecture Notes in Mathematics, vol. 3, New York University, Courant Institute of Mathematical Sciences, New York; American Mathematical Society, Providence, RI, 1999. MR 1677884
- Percy A. Deift, Alexander R. Its, and Xin Zhou, A Riemann-Hilbert approach to asymptotic problems arising in the theory of random matrix models, and also in the theory of integrable statistical mechanics, Ann. of Math. (2) 146 (1997), no. 1, 149–235. MR 1469319, https://doi.org/10.2307/2951834
- P. Deift, A. Its, and I. Krasovsky, Asymptotics of the Airy-kernel determinant, Comm. Math. Phys. 278 (2008), no. 3, 643–678. MR 2373439, https://doi.org/10.1007/s00220-007-0409-x
- L. M. Delves and J. L. Mohamed, Computational methods for integral equations, Cambridge University Press, Cambridge, 1985. MR 837187
- Ronald A. DeVore and George G. Lorentz, Constructive approximation, Grundlehren der Mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 303, Springer-Verlag, Berlin, 1993. MR 1261635
- Momar Dieng, Distribution functions for edge eigenvalues in orthogonal and symplectic ensembles: Painlevé representations, Int. Math. Res. Not. 37 (2005), 2263–2287. MR 2181265, https://doi.org/10.1155/IMRN.2005.2263
- Jean Dieudonné, History of functional analysis, North-Holland Mathematics Studies, vol. 49, North-Holland Publishing Co., Amsterdam-New York, 1981. Notas de Matemática [Mathematical Notes], 77. MR 605488
- Tobin A. Driscoll, Folkmar Bornemann, and Lloyd N. Trefethen, The chebop system for automatic solution of differential equations, BIT 48 (2008), no. 4, 701–723. MR 2465699, https://doi.org/10.1007/s10543-008-0198-4
- N. Danford and Dž. Švarc, \cyr Lineĭnye operatory. Chast′ II: Spektral′naya teoriya. Samosopryazhennye operatory v gil′bertovom prostranstve, Izdat. “Mir”, Moscow, 1966 (Russian). MR 0216304
- Freeman J. Dyson, Fredholm determinants and inverse scattering problems, Comm. Math. Phys. 47 (1976), no. 2, 171–183. MR 0406201
- Eastham, M.: 1973, The spectral theory of periodic differential equations, Scottish Academic Press, Edinburgh.
- P. E. Falloon, P. C. Abbott, and J. B. Wang, Theory and computation of spheroidal wavefunctions, J. Phys. A 36 (2003), no. 20, 5477–5495. MR 1985521, https://doi.org/10.1088/0305-4470/36/20/309
- Fenyő, S. and Stolle, H.-W.: 1982-1984, Theorie und Praxis der linearen Integralgleichungen. Vol. I-IV, Birkhäuser, Basel.
- Fredholm, I.: 1900, Sur une nouvelle méthode pour la résolution du problème de Dirichlet, Öfversigt Kongl. Vetenskaps-Akad. Förhandlingar 57, 39-46.
- Ivar Fredholm, Sur une classe d’équations fonctionnelles, Acta Math. 27 (1903), no. 1, 365–390 (French). MR 1554993, https://doi.org/10.1007/BF02421317
- Fredholm, I.: 1909, Les équations intégrales linéaires, C. R. Congrés des Math. tenu à Stockholm 1909.
- Gaudin, M.: 1961, Sur la loi limite de l'espacement des valeurs propres d'une matrice aléatoire, Nucl. Phys. 25, 447-458.
- Walter Gautschi, Computation of Bessel and Airy functions and of related Gaussian quadrature formulae, BIT 42 (2002), no. 1, 110–118. MR 1896388, https://doi.org/10.1023/A:1021974203359
- I. C. Gohberg and M. G. Kreĭn, Introduction to the theory of linear nonselfadjoint operators, Translated from the Russian by A. Feinstein. Translations of Mathematical Monographs, Vol. 18, American Mathematical Society, Providence, R.I., 1969. MR 0246142
- Israel Gohberg, Seymour Goldberg, and Marinus A. Kaashoek, Classes of linear operators. Vol. I, Operator Theory: Advances and Applications, vol. 49, Birkhäuser Verlag, Basel, 1990. MR 1130394
- Israel Gohberg, Seymour Goldberg, and Nahum Krupnik, Traces and determinants of linear operators, Operator Theory: Advances and Applications, vol. 116, Birkhäuser Verlag, Basel, 2000. MR 1744872
- Gene H. Golub and Charles F. Van Loan, Matrix computations, 3rd ed., Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 1996. MR 1417720
- W. H. Greub, Multilinear algebra, Die Grundlehren der Mathematischen Wissenschaften, Band 136, Springer-Verlag New York, Inc., New York, 1967. MR 0224623
- A. Grothendieck, La théorie de Fredholm, Bull. Soc. Math. France 84 (1956), 319–384 (French). MR 0088665
- Wolfgang Hackbusch, Integral equations, International Series of Numerical Mathematics, vol. 120, Birkhäuser Verlag, Basel, 1995. Theory and numerical treatment; Translated and revised by the author from the 1989 German original. MR 1350296
- Hadamard, J.: 1893, Résolution d'une question relative aux déterminants, Bull. Sci. Math. 17, 240-246.
- Jonas Hägg, Local Gaussian fluctuations in the Airy and discrete PNG processes, Ann. Probab. 36 (2008), no. 3, 1059–1092. MR 2408583, https://doi.org/10.1214/07-AOP353
- S. P. Hastings and J. B. McLeod, A boundary value problem associated with the second Painlevé transcendent and the Korteweg-de Vries equation, Arch. Rational Mech. Anal. 73 (1980), no. 1, 31–51. MR 555581, https://doi.org/10.1007/BF00283254
- Nicholas J. Higham, Accuracy and stability of numerical algorithms, 2nd ed., Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. MR 1927606
- Hilbert, D.: 1904, Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen. (Erste Mitteilung), Nachr. Ges. Wiss. Göttingen 1904, 49-91.
- Hilbert, D.: 1912, Grundzüge einer allgemeinen Theorie der linearen Integralgleichungen, Teubner, Leipzig, Berlin.
- Einar Hille and J. D. Tamarkin, On the characteristic values of linear integral equations, Acta Math. 57 (1931), no. 1, 1–76. MR 1555331, https://doi.org/10.1007/BF02403043
- Harry Hochstadt, Integral equations, John Wiley & Sons, New York-London-Sydney, 1973. Pure and Applied Mathematics. MR 0390680
- Michio Jimbo, Tetsuji Miwa, Yasuko Môri, and Mikio Sato, Density matrix of an impenetrable Bose gas and the fifth Painlevé transcendent, Phys. D 1 (1980), no. 1, 80–158. MR 573370, https://doi.org/10.1016/0167-2789(80)90006-8
- Kurt Johansson, Shape fluctuations and random matrices, Comm. Math. Phys. 209 (2000), no. 2, 437–476. MR 1737991, https://doi.org/10.1007/s002200050027
- Kurt Johansson, Discrete polynuclear growth and determinantal processes, Comm. Math. Phys. 242 (2003), no. 1-2, 277–329. MR 2018275, https://doi.org/10.1007/s00220-003-0945-y
- R. Jost and A. Pais, On the scattering of a particle by a static potential, Physical Rev. (2) 82 (1951), 840–851. MR 0044404
- Nicholas M. Katz and Peter Sarnak, Random matrices, Frobenius eigenvalues, and monodromy, American Mathematical Society Colloquium Publications, vol. 45, American Mathematical Society, Providence, RI, 1999. MR 1659828
- Morris Kline, Mathematical thought from ancient to modern times, Oxford University Press, New York, 1972. MR 0472307
- Konrad Knopp, Theorie and Anwendung der unendlichen Reihen, Fünfte berichtigte Auflage. Die Grundlehren der Mathematischen Wissen schen Wissenschaften, Band 2, Springer-Verlag, Berlin-New York, 1964 (German). MR 0183997
- Rainer Kress, Linear integral equations, 2nd ed., Applied Mathematical Sciences, vol. 82, Springer-Verlag, New York, 1999. MR 1723850
- Dirk P. Laurie, Computation of Gauss-type quadrature formulas, J. Comput. Appl. Math. 127 (2001), no. 1-2, 201–217. Numerical analysis 2000, Vol. V, Quadrature and orthogonal polynomials. MR 1808574, https://doi.org/10.1016/S0377-0427(00)00506-9
- Peter D. Lax, Functional analysis, Pure and Applied Mathematics (New York), Wiley-Interscience [John Wiley & Sons], New York, 2002. MR 1892228
- Barry M. McCoy, Jacques H. H. Perk, and Robert E. Shrock, Time-dependent correlation functions of the transverse Ising chain at the critical magnetic field, Nuclear Phys. B 220 (1983), no. 1, , FS 8, 35–47. MR 702266, https://doi.org/10.1016/0550-3213(83)90132-3
- Madan Lal Mehta, Random matrices, 3rd ed., Pure and Applied Mathematics (Amsterdam), vol. 142, Elsevier/Academic Press, Amsterdam, 2004. MR 2129906
- Carl Meyer, Matrix analysis and applied linear algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2000. With 1 CD-ROM (Windows, Macintosh and UNIX) and a solutions manual (iv+171 pp.). MR 1777382
- Moiseiwitsch, B.: 1977, Recent progress in atomic collisions theory, Rep. Prog. Phys. 40, 843-904.
- E. J. Nyström, Über Die Praktische Auflösung von Integralgleichungen mit Anwendungen auf Randwertaufgaben, Acta Math. 54 (1930), no. 1, 185–204 (German). MR 1555306, https://doi.org/10.1007/BF02547521
- Shin’ichi Oishi, Relationship between Hirota’s method and the inverse spectral method—the Korteweg-de Vries equation’s case, J. Phys. Soc. Japan 47 (1979), no. 3, 1037–1038. MR 548512, https://doi.org/10.1143/JPSJ.47.1037
- Albrecht Pietsch, History of Banach spaces and linear operators, Birkhäuser Boston, Inc., Boston, MA, 2007. MR 2300779
- J. Plemelj, Zur Theorie der Fredholmschen Funktionalgleichung, Monatsh. Math. Phys. 15 (1904), no. 1, 93–128 (German). MR 1547272, https://doi.org/10.1007/BF01692293
- Christoph Pöppe, The Fredholm determinant method for the KdV equations, Phys. D 13 (1984), no. 1-2, 137–160. MR 775282, https://doi.org/10.1016/0167-2789(84)90274-4
- David Porter and David S. G. Stirling, Integral equations, Cambridge Texts in Applied Mathematics, Cambridge University Press, Cambridge, 1990. A practical treatment, from spectral theory to applications. MR 1111247
- Michael Prähofer and Herbert Spohn, Scale invariance of the PNG droplet and the Airy process, J. Statist. Phys. 108 (2002), no. 5-6, 1071–1106. Dedicated to David Ruelle and Yasha Sinai on the occasion of their 65th birthdays. MR 1933446, https://doi.org/10.1023/A:1019791415147
- Michael Prähofer and Herbert Spohn, Exact scaling functions for one-dimensional stationary KPZ growth, J. Statist. Phys. 115 (2004), no. 1-2, 255–279. MR 2070096, https://doi.org/10.1023/B:JOSS.0000019810.21828.fc
- Siegfried Prössdorf and Bernd Silbermann, Numerical analysis for integral and related operator equations, Mathematische Lehrbücher und Monographien, II. Abteilung: Mathematische Monographien [Mathematical Textbooks and Monographs, Part II: Mathematical Monographs], vol. 84, Akademie-Verlag, Berlin, 1991 (English, with English and German summaries). MR 1206476
- William P. Reinhardt and Attila Szabo, Fredholm method. I. A numerical procedure for elastic scattering, Phys. Rev. A (3) 1 (1970), 1162–1169. MR 0266459, https://doi.org/10.1103/PhysRevA.1.1162
- Jorge Rezende, Feynman integrals and Fredholm determinants, J. Math. Phys. 35 (1994), no. 8, 4357–4371. MR 1284645, https://doi.org/10.1063/1.530857
- R. D. Riess and L. W. Johnson, Error estimates for Clenshaw-Curtis quadrature, Numer. Math. 18 (1971/72), 345–353. MR 0305555, https://doi.org/10.1007/BF01404685
- T. Sasamoto, Spatial correlations of the 1D KPZ surface on a flat substrate, J. Phys. A 38 (2005), no. 33, L549–L556. MR 2165697, https://doi.org/10.1088/0305-4470/38/33/L01
- Barry Simon, Notes on infinite determinants of Hilbert space operators, Advances in Math. 24 (1977), no. 3, 244–273. MR 0482328, https://doi.org/10.1016/0001-8708(77)90057-3
- Barry Simon, Trace ideals and their applications, 2nd ed., Mathematical Surveys and Monographs, vol. 120, American Mathematical Society, Providence, RI, 2005. MR 2154153
- Smithies, F.: 1937, The eigen-values and singular values of integral equations, Proc. London Math. Soc. 43, 255-279.
- F. Smithies, Integral equations, Cambridge Tracts in Mathematics and Mathematical Physics, no. 49, Cambridge University Press, New York, 1958. MR 0104991
- Spohn, H.: 2008, Personal communication.
- G. W. Stewart, Matrix algorithms. Vol. I, Society for Industrial and Applied Mathematics, Philadelphia, PA, 1998. Basic decompositions. MR 1653546
- Stratton, J. A., Morse, P. M., Chu, L. J., Little, J. D. C. and Corbató, F. J.: 1956, Spheroidal wave functions, including tables of separation constants and coefficients, John Wiley & Sons, New York.
- Paul N. Swarztrauber, On computing the points and weights for Gauss-Legendre quadrature, SIAM J. Sci. Comput. 24 (2002), no. 3, 945–954. MR 1950519, https://doi.org/10.1137/S1064827500379690
- Craig A. Tracy and Harold Widom, Level-spacing distributions and the Airy kernel, Comm. Math. Phys. 159 (1994), no. 1, 151–174. MR 1257246
- Craig A. Tracy and Harold Widom, Fredholm determinants and the mKdV/sinh-Gordon hierarchies, Comm. Math. Phys. 179 (1996), no. 1, 1–9. MR 1395215
- Craig A. Tracy and Harold Widom, Universality of the distribution functions of random matrix theory, Integrable systems: from classical to quantum (Montréal, QC, 1999) CRM Proc. Lecture Notes, vol. 26, Amer. Math. Soc., Providence, RI, 2000, pp. 251–264. MR 1791893
- Lloyd N. Trefethen, Is Gauss quadrature better than Clenshaw-Curtis?, SIAM Rev. 50 (2008), no. 1, 67–87. MR 2403058, https://doi.org/10.1137/060659831
- F. G. Tricomi, Integral equations, Pure and Applied Mathematics. Vol. V, Interscience Publishers, Inc., New York; Interscience Publishers Ltd., London, 1957. MR 0094665
- Vallée, O. and Soares, M.: 2004, Airy functions and applications to physics, Imperial College Press, London.
- Helge von Koch, Sur les déterminants infinis et les équations différentielles linéaires, Acta Math. 16 (1892), no. 1, 217–295 (French). MR 1554829, https://doi.org/10.1007/BF02418991
- Jörg Waldvogel, Fast construction of the Fejér and Clenshaw-Curtis quadrature rules, BIT 46 (2006), no. 1, 195–202. MR 2214855, https://doi.org/10.1007/s10543-006-0045-4
- Webster, A. G.: 1927, Partial differential equations of mathematical physics, G. E. Stechert & Co., New York.
- E. T. Whittaker and G. N. Watson, A course of modern analysis, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1996. An introduction to the general theory of infinite processes and of analytic functions; with an account of the principal transcendental functions; Reprint of the fourth (1927) edition. MR 1424469
- Harold Widom, On asymptotics for the Airy process, J. Statist. Phys. 115 (2004), no. 3-4, 1129–1134. MR 2054175, https://doi.org/10.1023/B:JOSS.0000022384.58696.61
- Wilkinson, D.: 1978, Continuum derivation of the Ising model two-point function, Phys. Rev. D 17, 1629-1636.
Retrieve articles in Mathematics of Computation with MSC (2000): 65R20, 65F40, 47G10, 15A52
Retrieve articles in all journals with MSC (2000): 65R20, 65F40, 47G10, 15A52
Additional Information
Folkmar Bornemann
Affiliation:
Zentrum Mathematik – M3, Technische Universität München, Boltzmannstr. 3, 85747 Garching bei München, Germany
Email:
bornemann@ma.tum.de
DOI:
https://doi.org/10.1090/S0025-5718-09-02280-7
Received by editor(s):
June 24, 2008
Received by editor(s) in revised form:
March 16, 2009
Published electronically:
September 24, 2009
Article copyright:
© Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.


