On equations of double planes with $p_g=q=1$
HTML articles powered by AMS MathViewer
- by Carlos Rito;
- Math. Comp. 79 (2010), 1091-1108
- DOI: https://doi.org/10.1090/S0025-5718-09-02283-2
- Published electronically: September 2, 2009
- PDF | Request permission
Abstract:
This paper describes how to compute equations of plane models of minimal Du Val double planes of general type with $p_g=q=1$ and $K^2=2,\ldots ,8.$ A double plane with $K^2=8$ having bicanonical map not composed with the associated involution is also constructed. The computations are done using the algebra system Magma.References
- Wieb Bosma, John Cannon, and Catherine Playoust, The Magma algebra system. I. The user language, J. Symbolic Comput. 24 (1997), no. 3-4, 235–265. Computational algebra and number theory (London, 1993). MR 1484478, DOI 10.1006/jsco.1996.0125
- Arnaud Beauville, Surfaces algébriques complexes, Astérisque, No. 54, Société Mathématique de France, Paris, 1978 (French). Avec une sommaire en anglais. MR 485887
- Giuseppe Borrelli, The classification of surfaces of general type with nonbirational bicanonical map, J. Algebraic Geom. 16 (2007), no. 4, 625–669. MR 2357686, DOI 10.1090/S1056-3911-07-00478-X
- W. Barth, C. Peters, and A. Van de Ven, Compact complex surfaces, Ergebnisse der Mathematik und ihrer Grenzgebiete (3) [Results in Mathematics and Related Areas (3)], vol. 4, Springer-Verlag, Berlin, 1984. MR 749574, DOI 10.1007/978-3-642-96754-2
- F. Catanese, On a class of surfaces of general type, Algebraic Surfaces, CIME, Liguori, 269–284, 1981.
- Fabrizio Catanese, Singular bidouble covers and the construction of interesting algebraic surfaces, Algebraic geometry: Hirzebruch 70 (Warsaw, 1998) Contemp. Math., vol. 241, Amer. Math. Soc., Providence, RI, 1999, pp. 97–120. MR 1718139, DOI 10.1090/conm/241/03630
- F. Catanese and C. Ciliberto, Surfaces with $p_g=q=1$, Problems in the theory of surfaces and their classification (Cortona, 1988) Sympos. Math., XXXII, Academic Press, London, 1991, pp. 49–79. MR 1273372
- F. Catanese and C. Ciliberto, Symmetric products of elliptic curves and surfaces of general type with $p_g=q=1$, J. Algebraic Geom. 2 (1993), no. 3, 389–411. MR 1211993
- Ciro Ciliberto, The bicanonical map for surfaces of general type, Algebraic geometry—Santa Cruz 1995, Proc. Sympos. Pure Math., vol. 62, Amer. Math. Soc., Providence, RI, 1997, pp. 57–84. MR 1492518, DOI 10.1090/pspum/062.1/1492518
- Ciro Ciliberto and Margarida Mendes Lopes, On surfaces with $p_g=q=2$ and non-birational bicanonical maps, Adv. Geom. 2 (2002), no. 3, 281–300. MR 1924760, DOI 10.1515/advg.2002.014
- Fabrizio Catanese and Roberto Pignatelli, Fibrations of low genus. I, Ann. Sci. École Norm. Sup. (4) 39 (2006), no. 6, 1011–1049 (English, with English and French summaries). MR 2316980, DOI 10.1016/j.ansens.2006.10.001
- Patrick Du Val, On surfaces whose canonical system is hyperelliptic, Canad. J. Math. 4 (1952), 204–221. MR 48090, DOI 10.4153/cjm-1952-019-3
- R. Pignatelli, Some (big) irreducible components of the moduli space of minimal surfaces of general type with $p_g=q=1$ and $k^2=4$, math. AG/0801.1112v1.
- Francesco Polizzi, On surfaces of general type with $p_g=q=1,\ K^2=3$, Collect. Math. 56 (2005), no. 2, 181–234. MR 2154303
- Francesco Polizzi, Surfaces of general type with $p_g=q=1,\ K^2=8$ and bicanonical map of degree 2, Trans. Amer. Math. Soc. 358 (2006), no. 2, 759–798. MR 2177040, DOI 10.1090/S0002-9947-05-03673-1
- Francesco Polizzi, On surfaces of general type with $p_g=q=1$ isogenous to a product of curves, Comm. Algebra 36 (2008), no. 6, 2023–2053. MR 2418374, DOI 10.1080/00927870801948676
- Francesco Polizzi, Standard isotrivial fibrations with $p_g=q=1$, J. Algebra 321 (2009), no. 6, 1600–1631. MR 2498259, DOI 10.1016/j.jalgebra.2008.10.028
- Miles Reid, Campedelli versus Godeaux, Problems in the theory of surfaces and their classification (Cortona, 1988) Sympos. Math., XXXII, Academic Press, London, 1991, pp. 309–365. MR 1273384
- Carlos Rito, On surfaces with $p_g=q=1$ and non-ruled bicanonial involution, Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 6 (2007), no. 1, 81–102. MR 2341516
- Gang Xiao, Surfaces fibrées en courbes de genre deux, Lecture Notes in Mathematics, vol. 1137, Springer-Verlag, Berlin, 1985 (French). MR 872271
- Gang Xiao, Degree of the bicanonical map of a surface of general type, Amer. J. Math. 112 (1990), no. 5, 713–736. MR 1073006, DOI 10.2307/2374804
Bibliographic Information
- Carlos Rito
- Affiliation: Departamento de Matemática, Universidade de Trás-os-Montes e Alto Douro, 5000-911 Vila Real, Portugal
- MR Author ID: 744585
- Email: crito@utad.pt
- Received by editor(s): April 14, 2008
- Received by editor(s) in revised form: March 26, 2009
- Published electronically: September 2, 2009
- © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 79 (2010), 1091-1108
- MSC (2000): Primary 14J29, 14Q05
- DOI: https://doi.org/10.1090/S0025-5718-09-02283-2
- MathSciNet review: 2600557