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GAUSSIAN QUADRATURE FOR SUMS:

A RAPIDLY CONVERGENT SUMMATION SCHEME

H. MONIEN

Abstract. Gaussian quadrature is a well-known technique for numerical in-
tegration. Recently Gaussian quadrature with respect to discrete measures
corresponding to finite sums has found some new interest. In this paper we
apply these ideas to infinite sums in general and give an explicit construc-
tion for the weights and abscissae of Gaussian formulas. The abscissae of the
Gaussian summation have a very interesting asymptotic distribution function
with a kink singularity. We apply the Gaussian summation technique to two
problems which have been discussed in the literature. We find that the Gauss-
ian summation has a very rapid convergence rate for the Hardy-Littlewood
sum for a large range of parameters.

1. Introduction

Scalar sums of the form

(1.1)

∞∑
n=1

f(n)

with n an integer and f being a continuous function appear in nearly every context
of mathematics and physics. In many problems, either because f is for example
the solution to another complicated nonlinear problem or there exists no known
analytical expression for the sum, one has to resort to numerical summation tech-
niques. Because of its importance many techniques have been developed for a fast
evaluation of (1.1) which depend on the asymptotic behavior the function f(x). A
good summary of the classical techniques can be found in [2]. In the application of
these schemes the sequence sn =

∑n
m=1 f(m) is calculated and then extrapolated

to n → ∞. However if the function f reaches its asymptotic behavior only at very
large values of n, then these schemes are inefficient because a large number of terms
has to be accumulated before the asymptotic behavior is reached and not applicable
because rounding errors prevent a reliable extrapolation. Newer convergence accel-
eration methods such as the Levin and Levin-Sidi transformation schemes [15, 24]
have a more complicated convergence behavior and no simple statement can be
made for the onset of convergence in general. The recent proposal by Strebel (see
[3], chapter 3) has some very interesting properties, including very fast convergence
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for some applications which have not been studied in detail so far. So the prob-
lem of evaluating the sum (1.1) efficiently and reliably for problems with a large
intrinsic scale is interesting.

In this paper we discuss a summation scheme based on ideas related to Gauss
quadrature. The basic idea is to replace the sum (1.1) by another sum

(1.2)
∞∑

n=1

f(n) ≈
N∑

k=1

wkf(xk),

where the weights wk and abscissae xk are chosen in such a way as to approximate
closely the sum (1.1) for a large class of functions for a relatively small number N .
Because the values of xk are not fixed to be integer numbers the hope is that the
asymptotic behavior at large x is captured by the sum (1.2). The central question
is what are the optimal weights wk and points xk? The answer depends of course
on the function f , but for a certain general class of functions this question can be
answered. In this paper we focus on functions f(n) that are even in n which are
analytic in a neighborhood of n → ∞.

Similar schemes have been reviewed recently by Engblom [7]. Milovanović and
Cvetković [19] studied the convergence properties of Gaussian summation schemes
for sums of the form

∑
ν≥0 p

−νf (aq−ν), with |p|, |q| > 1. The Gaussian quadrature
using integral transforms to calculate infinite sums has been investigated by various
authors [6, 13, 14, 18, 26]. Uvarov and Nikiforov [22] used Chebyshev polynomials
for finite sums.

2. Moment generating functions and orthogonal polynomials

Consider a real function of a complex argument f(z) which has an asymptotic
expansion in powers of z−2 with a finite radius of convergence R,

f(z) =
a2
z2

+
a4
z4

+
a6
z6

+ . . .

for large |z| with some real coefficients a2, a4,, a6, . . . . The basic idea is, as in
Gaussian quadrature, to expand f(z) in terms of orthogonal polynomials pn in
k−2, k ∈ N, and sum these exactly. The relevant scalar product is

(2.1) (pn|pm) =

∞∑
k=1

1

k2
pn

(
1

k2

)
pm

(
1

k2

)
.

The orthogonal polynomials could be generated by using a Gram-Schmidt orthog-
onalization, but in this case it is much easier to use the close connection be-
tween Padé approximants of the moment generating function and corresponding
orthogonal polynomials. In fact the orthogonal polynomials corresponding to the
scalar product (2.1) are given by the reverse polynomial of the denominator of
the [M − 1/M ] Padé approximant of the moment generating function for succes-
sive values of M (Baker [1], chapter 7, equation (7.7) on page 86). The moments∑∞

k=1 k
−2m = ζ(2m) , m = 1, 2, . . . are generated by

(2.2) φ(z) =

∞∑
m=0

ζ(2m+ 2)zm =
1

2z

(
1− π

√
z cot(π

√
z)
)
,

which can be easily derived from the series expansion of the cot [16] (4.3.70) and the
equation for the Riemann zeta function for even integers [16] (23.3.16). Using the
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continued fraction expansion of tan(x) [16] (4.3.94) we can express the generating
function as:

(2.3) Φ(z) =
π2

6

1

1−
π2z/15

1−
π2z/35

1−
π2z/63

1− . . .

The numerator of the nth Padé approximant corresponding to this continued frac-
tion is denoted by Rn(x) and the denominator by Sn(x) with x = π

√
z. The

denominator and numerator obey the recursion relations [2]:

Rn+1(x) = Rn(x) + cn+1 x2 Rn−1(z),(2.4)

Sn+1(x) = Sn(x) + cn+1 x2 Sn−1(z),(2.5)

for n = 0, 1, 2 . . . with the initial conditions for the recursion being R−1(x) = 0,
R0(x) = c0x, S−1(x) = 1 and S0(x) = 1. The coefficients cn are given by c0 = 1/3,
cn = −1/((2n + 1)(2n + 3)), n = 1, 2, . . .. This recursion generates the Padé
convergents in the order [0/0], [0/1], [1/1], [1/2], . . . . According to equation (7.7)
in [1] the orthogonal polynomials corresponding to (2.2) are given by

(2.6) pn(z) =

{
1 n = 0,

znS2n−1

(
1
z

)
n �= 0.

Surprisingly enough the recursion relations for Rn(x) and Sn(x) can be solved
analytically. Let us discuss the recursion for (2.3). First note that the recursion for
the Bessel functions, Zν of half-integer index n+ 1/2, are given by:

(2.7) Zn+3/2(x)−
2n+ 1

x
Zn+1/2(x) + Zn−1/2(x) = 0.

Splitting of the asymptotic behavior for large n we define an(x) by requiring that

(2.8) Zn+1/2(x) =

(
2

x

)n

Γ(n+
1

2
) an(x).

The coefficients an(x) obey the recursion relation:

(2.9) an+1 = an − x2

4n2 − 1
an−1.

This is precisely the recursion relation for the Sn(x) if we shift the index n by 2.
Thus the recursion relation for Sn(x) has a solution of the form:

(2.10) Sn(x) =
xn+2

2n+2Γ(n+ 5
2 )

[
A(x)Jn+5/2(x) +B(x)Yn+5/2(x)

]
,

where A(x) and B(x) are two unknown functions which only depend on x and can
be determined from the initial conditions. Specializing to the initial conditions, an
explicit solution for Sn(x) can be obtained:

(2.11) Sn(x) = − πxn+3/2

Γ(n+ 5
2 )2

n+5/2

[
cos(x)Jn+5/2(x) + sin(x)Yn+5/2(x)

]
.
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This result will be useful to determine the distribution of zeros explicitly. Using
equations (2.11) and (2.6) the first few orthogonal polynomials are

p0(z) = 1,

p1(z) = z − π2

15
,

p2(z) = z2 − π2

9
z +

π4

945
.

. . .

Using the recursion relation for the Sn(z) it can be shown that the pn(z) obey the
recursion relation pn+1(z) = (z − an)pn(z) + bnpn−1(z) with

an =
2π2

(4n+ 1)(4n+ 5)
,

bn =
π4

(4n− 1)(4n+ 1)2(4n+ 3)
(2.12)

for n = 1, 2, . . . and a0 = π2/15. These polynomials are orthogonal with respect to
the following scalar product:

(pn|pm) =

∞∑
k=1

1

k2
pn

(
1

k2

)
pm

(
1

k2

)
= δnm

(4n+ 3)π3

2Γ2
(
2n+ 5

2

)
24(n+1)

,

which can be derived easily from (pn|pn) = (p0|p0)
∏n

k=1 bk with (p0|p0) = π2/6.
We note that these polynomials pn(z) are related to Bessel polynomials, yn(x), of
imaginary argument [12, 22]:

(2.13) pn(x) =
π2n+1/2

22n+1Γ(2n+ 3
2 )

Re

(
y2n+1

(
−i

√
x

π

))

and that they appear in various contexts [17, 21].

3. Calculation of the weights and abscissae

Given the three-term recursion relation for the orthogonal polynomials (2.12) the
problem of finding the weights and abscissae of the Gaussian quadrature formulas
for sums reduces to the standard procedure used to determine the analogous quan-
tities in Gaussian integration [10]. The Jacobi matrix for determining the weights
and abscissae is given by

(3.1) J̃N =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

a0
√
b1√

b1 a1
√
b2√

b2 a2
√
b3

. . .
. . .

. . .√
bN−2 aN−2

√
bN−1√

bN−1 aN−1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦
.

It is easy to calculate the weights and abscissae using an implementation of the
Golub and Welsh algorithm [10], either “gauss.m” from the QCP collection of
Gautschi [8], or the gaucof routine from the Numerical Recipes [23]. Since the
pn(z) are orthogonal polynomials in 1/k2 the eigenvalues of (3.1) do not give the
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summation points directly but are given by xk = 1/
√
λk, where λk is the kth eigen-

value of (3.1). In terms of the weights wk and abscissae xk determined from the
Jacobi matrix (3.1), the Gaussian summation procedure is given by:

(3.2)

∞∑
k=1

f(k) =

N∑
k=1

wkf (xk) + εN

with the standard error estimate εn (see e.g. [25]). The

(3.3) εN =
f (2N)(ξ)

(2N)!
(pN |pN ),

where ξ ∈ N. Although the error estimate (3.3) gives an upper bound, it is not
very useful to estimate the convergence of the Gaussian summation formulas. For
the specific examples below we can sharpen the error estimates and achieve a more
general understanding of the convergence of the Gaussian summation formulas.

4. Two examples

We apply the result of the preceding section to two examples. The first is the
Hardy-Littlewood function, which has interesting properties in itself and is defined
as:

(4.1) H(a) =
∞∑
k=1

sin(a/k)

k
.

This summand has an expansion in terms of 1/k2 for k/a � 1. For large values
of a the summation is not expected to converge before the k ≈ a. The numerical
evaluation of this function has been discussed by Gautschi [8, 9]. The methods
considered in these references are Gaussian integration of the Laplace transforma-
tion of the sum and the application of Euler-MacLaurin asymptotic summation to
eliminate the first asymptotic terms O(1/k2) and O(1/k4).

We have applied our method to problem (4.1) for a = 100. The summation
converges rapidly as shown below and for n > 14 the error in the sum is dominated
by the error in the weights and points. One observes that the differences of the
value of the Gaussian summation for different n is fluctuating around the machine ε.
We find that the Gaussian summation scheme achieves a high accuracy using very
few function evaluations of the summand. Basically the accuracy is limited by
the accuracy of the Gaussian weights and points used in the evaluation of the
summation. For example, using fifteen terms, the Gaussian summation gives the
result for the Hardy-Littlewood sum with an error less then 10−14 for all a ∈
(0, 100). We summarize our results in Table 1. The symbol − in the table indicates
when the relative error in the summation is less then 10−14. The error is plotted
in Fig. 6.1 for a = 100 as a function of n. Gaussian summation give results already
at a relatively small number of terms which does not grow like the scale where the
function reaches the asymptotic behavior.

Next we derive an analytic expression for the error estimate confirming the em-
pirical findings. Obviously

(4.2) Σn[f ] =
n∑

k=1

wkf(xk) =
1

2πi

∫
C

dζ
1

ζ

(
1− R2n−1(πζ)

S2n−1(πζ)

)
1

ζ2
f

(
1

ζ2

)
,
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where C is a contour enclosing the zeros of Sn(πζ). The error estimate ∆n[f ] =
Σn+1[f ]− Σn[f ] can be simplified using the recursion (2.4):

(4.3) ∆n[f ] =
1

2πi

∫
C

dζ An(πζ)
1

ζ2
f

(
1

ζ2

)
,

with

(4.4) An(ζ) =
2π(4n+ 3)π4n+1ζ4n+1

24n+5Γ2(2n+ 5/2)
× 1

S2n+1(πζ)S2n−1(πζ)
.

The asymptotic behavior of the error is determined by (4.3) for n � 1. Using the
asymptotic form of the Bessel function on the imaginary axis [16] and introducing
ν = 2n+ 5/2 we obtain as the leading contribution:

(4.5) An(iντ ) ≈ 8 νeΦν(ντ)

with
(4.6)

Φν(z) =
∑
±

[
−1

2
ln

(
z

ν ± 1

)
+

1

2
ln

(
1 +

(
z

ν ± 1

)2
)

− (ν ± 1)η

(
z

ν ± 1

)]

and

(4.7) η(τ ) =
√
τ2 + 1 + log

(
τ

1 +
√
τ2 + 1

)
.

For the Hardy-Littlewood function the error can be estimated as:

(4.8) ∆n ≈ 4ν

π

∫
C

dζ exp(Φν(ζ)) sinh

(
πa

ζ

)
.

This integral is completely dominated by the saddle points on the imaginary axis
which appear for 2ν2/(πa) � 1 and are located at

(4.9) ντmin = ± ν√
ξ2 − 2ξ

(
1 +

ξ

2(ξ − 2)ν
+O

(
1

ν2

))
,

with the direction of steepest descent being perpendicular to the imaginary axis
and ξ is given by ξ = 2ν2/(πa). The evaluation of the integral at the saddle point
yields:

(4.10) ∆n ≈ 8ν

√
2π

Φ′′
ν(ντmin)

exp (Φν (ντmin)) sinh

(
πa

ντmin

)
.

For 2ν2/(πa) � 1 this expression can be simplified further to finally yield the
asymptotic error estimate:

(4.11) ∆n ≈ 2
√
πν e−πa/ν

(
e2πa

4ν2

)2ν

.

We have plotted this error estimate in Fig. 6.1. The agreement of the saddle
point approximation (4.10) and the analytic asymptotic expression (4.11) with the
numerical result is quite reasonable. This expression confirms that for smooth
functions the Gaussian summation has a very rapid rate of convergence. The rate
of convergence is determined by the scale of the function, in this case a at which
the asymptotic behavior sets in. However in the Gaussian summation the rate of
convergence is determined by the ratio a/ν2 so that convergence already sets in
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at ν ≈
√
a. This is a more rapid convergence rate than any of the extrapolation

schemes for sums proposed in [9].
The second example serves to illustrate this point more clearly. We consider a

sum known explicitly [16]:

(4.12) G(a) =

∞∑
k=−∞

1

a2 + k2
=

π

a
coth(πa),

with a ∈ R>0. We have applied Gaussian summation to (4.12). Again we observe
rapid convergence even for values of a as large as 1000. The numerical convergence
pattern is completely regular. In this case the expression for the error estimator
∆n can be given without approximation because the contour integral can be done
exactly by deforming the contour and is given by the residues of the integrand at
±ia:

(4.13) ∆n =
1

2πi

∫
C

dζ An(ζ)
1

a2 + ζ2
=

An(iπa)

a
.

For large values of a, using the asymptotic expression for An for ν2 � πa and
a � ν, this expression simplifies to:

(4.14) ∆n ≈ 8ν exp

(
− ν2

πa

)
.

We contrast this behavior with other well-known techniques for acceleration of
sums such as Richardson extrapolation [2]. Using the Euler-MacLaurin sum formula
it can be shown that the partial sums behave asymptotically as:

(4.15)

Gn(a) =
1

a2
+ 2

n∑
k=1

1

a2 + k2

=
π coth(πa)

a
− 2

n
+

1

n2
+

2a2 − 1

3n3
− a2

n4
− 6a4 − 10a2 + 1

15n5
+ · · · .

The Nth Richardson extrapolation for the partial sums at some n is given by:

(4.16) RN [G] =

N∑
k=0

(−1)k+N (n+ k)N

k!(N − k)!
Gn+k(a).

The asymptotic k−2 behavior of the sum, (4.12), is only reached when |k| ≈ |a| and
only then convergence of the partials sums starts. Applying Richardson extrapola-
tion the terms in 1/n are successively removed. However because the coefficients
of the n−m terms are approaching am the convergence is very slow and the asymp-
totic behavior only sets in when n � a. This can be seen in the plot of the error
in the Richardson extrapolations of (4.12), Fig. 6.3. The relative error is given
by ∆RN [G](a) = |(RN [G](a)−G(a))/G(a)|. It is clear that Gaussian summation
achieves the same accuracy with a substantially smaller number of function evalua-
tions. In fact the Richardson extrapolation shows spurious convergence for partial
sums with N ∼ a.

5. Distribution of zeros of the orthogonal polynomials

The distribution of zeros of the denominators of the Padé approximants Sn(x)
turns out to be quite unusual. According to (2.11) the zeros of Sn(x) for a given
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odd integer number n are determined by the equation:

(5.1) cos(x)Jn+5/2(x) + sin(x)Yn+5/2(x) = 0.

We are interested in the asymptotic behavior of the zeros at large values of n. Let
x > 0. The function is symmetric with respect to x → −x, so for each zero x0 there
is a corresponding zero at −x0. We define ν = n+5/2 and τ = x/ν. The condition
for a zero of the denominator apart from nonvanishing prefactors is:

(5.2) cos(ντ )Jν(ντ ) + sin(ντ )Yν(ντ ) = 0.

In the limit ν → ∞ we have to differentiate between two regimes, τ < 1 and τ > 1.
For the first case, τ < 1, the leading asymptotic behavior of the Bessel function
corresponding to x < ν is given by [16, 11]:

Jν(ντ ) =
1√
2πν

exp(ν(
√
1− τ2 − arcosh(1/τ )))

(1− τ2)1/4
(5.3)

and

Yν(ντ ) =
−2√
2πν

exp(−ν(
√
1− τ2 − arcosh(1/τ )))

(1− τ2)1/4
.(5.4)

The argument of the exponent of the second term is negative in the interval (0, 1).
The first term is exponentially suppressed compared to the second term. The zeros
of the denominator for τ ∈ (0, 1) are therefore determined by the expression:

(5.5) sin(ντ ) = 0.

From this equation we conclude that ντ = πm with m an integer of the same order
as ν, so it is useful to introduce σ = m/ν, so that in this regime τ = πσ.

Next we consider the case τ > 1. The leading term in the asymptotic expansion
of the Bessel functions takes a different form:

Jν(ντ ) =

√
2

πν
cos(ν(

√
τ2 − 1− arccos(1/τ ))),(5.6)

Yν(ντ ) =

√
2

πν
sin(ν(

√
τ2 − 1− arccos(1/τ ))).(5.7)

For this case the leading asymptotic behavior of the zeros of the denominator have
to be determined by the following equation:

(5.8) cos(ν(τ −
√
τ2 − 1 + arccos(1/τ ))) = 0.

In this regime the zeros are solutions of τ −
√
τ2 − 1 + arccos(1/τ ) = πσ. To

summarize, the asymptotic behavior of the zeros is given by:

(5.9) πσ(τ ) =

{
τ τ ≤ 1,

τ −
√
τ2 − 1 + arccos(1/τ ) τ > 1.

Note that σ approaches 1/2 in the limit τ → ∞. This is expected because we have
considered the case x > 0 only. In fact the distribution of zeros is symmetric in the
range σ ∈ (−1/2, 1/2) since the Sn(x) depend on x2, so only half of the zeros lie
above 0. We enumerate the positive zeros by xk, k ∈ {1, 2, . . . n}. The n negative
zeros are given by −xk. The asymptotic behavior of the zeros is surprising: For
large n the first [2n/π] zeros are with high accuracy given by x = π, 2π, 3π, ... or in
terms of the original summation variable by 1, 2, 3 . . .. However for k > [2n/π] the
distance between two consecutive zeros becomes larger. The asymptotic behavior
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has been verified in numerical determination of the zeros. The Gaussian quadrature
for sums achieves its accuracy by evaluating [2n/π] points at the original summation
points and using the rest of the points to explore the asymptotic behavior of the
function which is being summed. This distribution of the zeros is unusual because
a singularity appears in the range of integration which is not present in the moment
generating function or the scalar product. For comparision we have plotted in Fig.
6.4 the asymptotic density of zeros for the Hermite and Laguerre polynomials as
given by Calogero and Perelomov [4, 5] and the asymptotic density of zeros of Sn

as a function 2σ to map the interval to [−1, 1]. All densities are normalized to
one. As can be clearly observed the density of zeros of the Hermite and Laguerre
polynomials has a singularity at ±1 whereas in our case the singularity appears at
±π/4 and smoothly vanishes at ±1.

6. Conclusions

The general problem of summation of smooth functions is considered. Summa-
tion formulas in analogy to Gaussian quadrature have been derived. The Padé
approximants of the moment generating functions have been used to derive the
explicit solution of the recursion relation. We have used this to give an explicit for-
mula for the corresponding orthogonal polynomials. The asymptotic distribution
of the zeros of these polynomials is derived. We have shown that the distribution of
zeros shows an unusual behavior exhibiting a cusp. We demonstrate that Gaussian
summation needs a substantially smaller number (

√
n compared to n) of function

evaluations for smooth functions with a large scale than other common techniques.
In particular higher order Richardson extrapolation will lead to rounding errors
spoiling the convergence.

It would be interesting to investigate Gaussian summation for different kinds of
linear functionals. Another interesting point is the development of Kronrod schemes
for summation which we are currently working on.

Table 1. Results for the relative error in evaluation of the Hardy-
Littlewood sum.

n ∆H(1) ∆H(5) ∆H(10) ∆H(20) ∆H(40) ∆H(100)

2 8.73 · 10−9 1.58 · 10−2 1.9 · 100 4.47 · 10−1 5.06 · 10−1 5.61 · 10−1

3 - 2.53 · 10−6 1.02 · 10−2 9.55 · 10−1 2.29 · 10−1 3.29 · 100
4 - 3.66 · 10−11 3.3 · 10−6 1.67 · 10−2 1.28 · 100 3.29 · 100
5 - - 1.47 · 10−10 2.29 · 10−5 2.48 · 10−1 4.51 · 10−1

6 - - - 5.19 · 10−9 3.04 · 10−3 2.53 · 100
7 - - - 2.85 · 10−13 5.89 · 10−6 2.77 · 100
8 - - - - 2.8 · 10−9 1.09 · 100
9 - - - - 4.19 · 10−13 4.46 · 10−2

10 - - - - - 3.87 · 10−4

11 - - - - - 1.02 · 10−6

12 - - - - - 1.01 · 10−9

13 - - - - - 4.07 · 10−13

14 - - - - - 2.51 · 10−14

15 - - - - - -
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Figure 6.1. Relative error in the evaluation of the Hardy-
Littlewood sum for a = 100. The squares (�) are indicating the
numerical error in the Gaussian summation, the crosses (×) are
indicating the saddle point approximation of the error integral and
the solid line gives the asymptotic behavior of the former for large
n. The dashed line gives the machine ε for comparison.
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Figure 6.2. Relative error of the Gaussian summations of exam-
ple 2, sum (4.12), for a = 1000. The solid line is the error estimate
given in the text (∼ 8n exp(−4n2/(πa))) and the dotted line is
giving the machine ε.
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Figure 6.4. Asymptotic density of zeros of the polynomials Sn

(solid line), the Hermite polynomials (dotted line) and the La-
guerre polynomials (dashed line). Note that the density of the Her-
mite and Laguerre polynomials has a singular behavior at x = ±1
whereas the density of zeros of the Sn has a kink singularity at
x = ±π/4.
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