Positive interpolatory quadrature rules generated by some biorthogonal polynomials
HTML articles powered by AMS MathViewer
- by D. S. Lubinsky and A. Sidi;
- Math. Comp. 79 (2010), 845-855
- DOI: https://doi.org/10.1090/S0025-5718-09-02299-6
- Published electronically: September 18, 2009
- PDF | Request permission
Abstract:
Interpolatory quadrature rules whose abscissas are zeros of a biorthogonal polynomial have proved to be useful, especially in numerical integration of singular integrands. However, the positivity of their weights has remained an open question, in some cases, since 1980. We present a general criterion for this positivity. As a consequence, we establish positivity of the weights in a quadrature rule introduced by the second author in 1980, generated by a polynomial that is biorthogonal to $\left ( \log x\right ) ^{j}$, $0\leq j\leq n-1$.References
- T. Bloom, D. S. Lubinsky, and H. Stahl, What distributions of points are possible for convergent sequences of interpolatory integration rules?, Constr. Approx. 9 (1993), no. 1, 41–58. MR 1198522, DOI 10.1007/BF01229335
- E. W. Cheney, Introduction to approximation theory, AMS Chelsea Publishing, Providence, RI, 1998. Reprint of the second (1982) edition. MR 1656150
- G. Freud, Orthogonal Polynomials, Akademiai Kiado, Budapest, 1971.
- D. S. Lubinsky and A. Sidi, Strong asymptotics for polynomials biorthogonal to powers of $\log x$, Analysis 14 (1994), no. 4, 341–379. MR 1310619, DOI 10.1524/anly.1994.14.4.341
- D. S. Lubinsky and A. Sidi, Zero distribution of composite polynomials and polynomials biorthogonal to exponentials, Constr. Approx. 28 (2008), no. 3, 343–371. MR 2453371, DOI 10.1007/s00365-008-9014-2
- D. S. Lubinsky and I. Soran, Weights whose biorthogonal polynomials admit a Rodrigues formula, J. Math. Anal. Appl. 324 (2006), no. 2, 805–819. MR 2265082, DOI 10.1016/j.jmaa.2005.12.055
- D. S. Lubinsky and H. Stahl, Some explicit biorthogonal polynomials, Approximation theory XI: Gatlinburg 2004, Mod. Methods Math., Nashboro Press, Brentwood, TN, 2005, pp. 279–285. MR 2126686
- Franz Peherstorfer, Characterization of positive quadrature formulas, SIAM J. Math. Anal. 12 (1981), no. 6, 935–942. MR 635246, DOI 10.1137/0512079
- Franz Peherstorfer, Characterization of quadrature formula. II, SIAM J. Math. Anal. 15 (1984), no. 5, 1021–1030. MR 755862, DOI 10.1137/0515079
- Franz Peherstorfer, Positive quadrature formulas. III. Asymptotics of weights, Math. Comp. 77 (2008), no. 264, 2241–2259. MR 2429883, DOI 10.1090/S0025-5718-08-02119-4
- H. J. Schmid, A note on positive quadrature rules, Rocky Mountain J. Math. 19 (1989), no. 1, 395–404. Constructive Function Theory—86 Conference (Edmonton, AB, 1986). MR 1016190, DOI 10.1216/RMJ-1989-19-1-395
- Avram Sidi, Numerical quadrature and nonlinear sequence transformations; unified rules for efficient computation of integrals with algebraic and logarithmic endpoint singularities, Math. Comp. 35 (1980), no. 151, 851–874. MR 572861, DOI 10.1090/S0025-5718-1980-0572861-2
- Avram Sidi, Numerical quadrature rules for some infinite range integrals, Math. Comp. 38 (1982), no. 157, 127–142. MR 637291, DOI 10.1090/S0025-5718-1982-0637291-5
- A. Sidi, Problems 5-8, (in) Numerical Integration III (eds. H. Brass and G. Hämmerlin), Birkhäuser, Berlin, 1988, pp. 321–325.
- Avram Sidi, Practical extrapolation methods, Cambridge Monographs on Applied and Computational Mathematics, vol. 10, Cambridge University Press, Cambridge, 2003. Theory and applications. MR 1994507, DOI 10.1017/CBO9780511546815
- Avram Sidi and Doron S. Lubinsky, On the zeros of some polynomials that arise in numerical quadrature and convergence acceleration, SIAM J. Numer. Anal. 20 (1983), no. 2, 400–405. MR 694528, DOI 10.1137/0720028
- Avram Sidi and Doron S. Lubinsky, Biorthogonal polynomials and numerical integration formulas for infinite intervals, JNAIAM J. Numer. Anal. Ind. Appl. Math. 2 (2007), no. 3-4, 209–226. MR 2376090
Bibliographic Information
- D. S. Lubinsky
- Affiliation: School of Mathematics, Georgia Institute of Technology, Atlanta, Georgia 30332-0160
- MR Author ID: 116460
- ORCID: 0000-0002-0473-4242
- Email: lubinsky@math.gatech.edu
- A. Sidi
- Affiliation: Department of Computer Science, Technion-Israel Institute of Technology, Haifa 32000 Israel
- Email: asidi@cs.technion.ac.il
- Received by editor(s): October 7, 2008
- Published electronically: September 18, 2009
- Additional Notes: Research supported by NSF grant DMS0400446 and US-Israel BSF grant 2004353.
- © Copyright 2009 American Mathematical Society
- Journal: Math. Comp. 79 (2010), 845-855
- MSC (2000): Primary 41A55, 65D30, 65B99, 42C99
- DOI: https://doi.org/10.1090/S0025-5718-09-02299-6
- MathSciNet review: 2600546