A CONVERGENT FINITE ELEMENT-FINITE VOLUME SCHEME FOR THE COMPRESSIBLE STOKES PROBLEM.
PART II: THE ISENTROPIC CASE

R. EYMARD, T. GALLOUËT, R. HERBIN, AND J. C. LATCHÉ

Abstract. In this paper, we propose a discretization for the (nonlinearized) compressible Stokes problem with an equation of state of the form \(p = \rho^\gamma \) (where \(p \) stands for the pressure and \(\rho \) for the density). This scheme is based on Crouzeix-Raviart approximation spaces. The discretization of the momentum balance is obtained by the usual finite element technique. The discrete mass balance is obtained by a finite volume scheme, with an upwinding of the density, and two additional stabilization terms. We prove \(a \text{ priori} \) estimates for the discrete solution, which yield its existence. Then the convergence of the scheme to a solution of the continuous problem is established. The passage to the limit in the equation of state requires the a.e. convergence of the density. It is obtained by adapting at the discrete level the “effective viscous pressure lemma” of the theory of compressible Navier-Stokes equations.

1. INTRODUCTION

Let \(\Omega \) be a bounded open set of \(\mathbb{R}^d \), \(d = 2 \) or \(3 \), with a Lipschitz continuous boundary and let \(\gamma > 1 \). For \(f \in L^2(\Omega)^d \) and \(M > 0 \), we consider the following problem:

\[
\begin{align*}
-\Delta u + \nabla p &= f \quad \text{in } \Omega, \quad u = 0 \text{ on } \partial \Omega, \\
\text{div}(\rho u) &= 0 \quad \text{in } \Omega, \quad \rho \geq 0 \quad \text{in } \Omega, \quad \int_{\Omega} \rho(x) \, dx = M, \\
p &= \rho^\gamma \quad \text{in } \Omega.
\end{align*}
\]

Definition 1.1. Let \(f \in L^2(\Omega)^d \) and \(M > 0 \). A weak solution of Problem (1.1) is a function \((u, p, \rho) \in H^1_0(\Omega)^d \times L^2(\Omega) \times L^2(\Omega) \) satisfying:

\[
\begin{align*}
\int_{\Omega} \nabla u : \nabla v \, dx - \int_{\Omega} p \, \text{div}(v) \, dx &= \int_{\Omega} f \cdot v \, dx \quad \text{for all } v \in (H^1_0(\Omega))^d, \\
\int_{\Omega} \rho u \cdot \nabla \varphi \, dx &= 0 \quad \text{for all } \varphi \in W^{1,\infty}(\Omega), \\
\rho \geq 0 \text{ a.e. in } \Omega, \quad \int_{\Omega} \rho \, dx = M, \quad p = \rho^\gamma \text{ a.e. in } \Omega.
\end{align*}
\]
The main objective of this paper is to present a numerical scheme for the computation of an approximate solution of Problem (1.1) and to prove the convergence (up to a subsequence, since, up to now, no uniqueness result is available for the solution of (1.1)) of this approximate solution towards a weak solution of (1.1) (i.e., a solution of (1.2)) as the mesh size goes to 0.

The proposed numerical scheme combines low-order finite element and finite volume techniques and is very close to a scheme which was implemented for the solution of barotropic Navier-Stokes equations in [6] and further extended to two-phase flows in [9]; the resulting code is today currently used at the French Institut de Radioprotection et de Sûreté Nucléaire (IRSN) for “real-life” studies in the nuclear safety field. Up to now, stability (in the sense of conservation of entropy) is known for these schemes, and numerical experiments show convergence rates close to one in natural energy norms. Our goal is now to prove their convergence. This work is a step in this direction, and it follows a previous analysis ([7], part I of the present paper) restricted to the linear equation of state \(p = \rho \). The additional difficulty tackled here is to prove the a.e. convergence for the density, which necessitates to adapt P.L. Lions’ “effective viscous pressure trick” [11] at the discrete level. Finally, for the sake of simplicity, we use here a simplified form of the diffusion term (\(-\Delta u\)), but it is clear from the subsequent developments that the presented theory holds for any linear elliptic operator (and in particular for the usual form of the viscous term for compressible constant viscosity flows).

This paper is organized as follows. In Section 2, we present a simple way to prove a known preliminary result, namely the convergence (up to a subsequence) of the weak solution of (1.1) with \(f_n \) and \(M_n \) (instead of \(f \) and \(M \)) to a weak solution of (1.1) as \(n \to \infty \), assuming that \(f_n \) weakly converges to \(f \) in \((L^2(\Omega))^d \) and \(M_n \) converges to \(M \) in \(\mathbb{R} \). Then, after introducing the discretization (Section 3) and the proposed scheme (Section 4), we adapt this proof in Section 5 to prove the convergence of the scheme to a weak solution of Problem (1.1). Finally, for the sake of completeness, Sections A and B gather some simple proofs of known lemmas.

Remark 1.2 (Forcing term involving the density). Instead of taking a given function \(f \) in (1.1a), it is possible, in order to take the gravity effects into account, to take \(f = \rho \, g \) with \(g \in L^\infty(\Omega)^d \). The convergence results given below are still true.

In this paper, we use the following notation:

if \(d = 2 \), \(\text{curl}(v) = \frac{\partial v_3}{\partial x_2} - \frac{\partial v_2}{\partial x_3} \), and, if \(d = 3 \), \(\text{curl}(v) = \begin{bmatrix} \frac{\partial v_3}{\partial x_2} & \frac{\partial v_2}{\partial x_3} \\ \frac{\partial v_1}{\partial x_3} & \frac{\partial v_3}{\partial x_1} \\ \frac{\partial v_2}{\partial x_1} & \frac{\partial v_1}{\partial x_2} \end{bmatrix} \),

where \(v \) is a vector-valued function. With this notation, if \(v \in H^2(\Omega)^d \) and \(w \in H^1(\Omega)^d \), the following identity holds:

\[
\int_{\Omega} \nabla v : \nabla w \, dx = \int_{\Omega} \text{curl}(v) \cdot \text{curl}(w) \, dx + \int_{\Omega} \text{div}(v) \, \text{div}(w) \, dx + \int_{\partial \Omega} (\nabla v \cdot n) \cdot w \, d\gamma + \int_{\partial \Omega} \text{curl}(v) \cdot (w \wedge n) \, d\gamma - \int_{\partial \Omega} \text{div}(v) \, (w \cdot n) \, d\gamma,
\]
where, for any vectors \(\mathbf{w} \) and \(\mathbf{n} \), we denote by \(\mathbf{w} \land \mathbf{n} \):

\[
\text{if } d = 2, \quad \mathbf{w} \land \mathbf{n} = \mathbf{w}_1 \mathbf{n}_2 - \mathbf{w}_2 \mathbf{n}_1; \quad \text{and, if } d = 3, \quad \mathbf{w} \land \mathbf{n} = \begin{bmatrix}
\mathbf{w}_2 \mathbf{n}_3 - \mathbf{w}_3 \mathbf{n}_2 \\
\mathbf{w}_3 \mathbf{n}_1 - \mathbf{w}_1 \mathbf{n}_3 \\
\mathbf{w}_1 \mathbf{n}_2 - \mathbf{w}_2 \mathbf{n}_1
\end{bmatrix}.
\]

The identity (1.3) is easily obtained by supposing that the functions \(\mathbf{v} \) and \(\mathbf{w} \) are regular and then using a density argument. If \(\mathbf{v} \in H^1(\Omega)^d \) and \(\mathbf{w} \in H^1_0(\Omega)^d \), it boils down to:

\[
\int_\Omega \nabla \mathbf{v} : \nabla \mathbf{w} \, dx = \int_\Omega \operatorname{curl}(\mathbf{v}) \cdot \operatorname{curl}(\mathbf{w}) \, dx + \int_\Omega \operatorname{div}(\mathbf{v}) \, \operatorname{div}(\mathbf{w}) \, dx.
\] (1.4)

2. Continuity with respect to the data

We begin this section by a preliminary lemma, which is a simplified version of a result of the theory of renormalized solutions of the transport equation [11]. The proof of this lemma is given in Section A.

Lemma 2.1. Let \(\Omega \) be a bounded open set of \(\mathbb{R}^d \) and \(\gamma > 1 \). Let \(\rho \in L^{2\gamma}(\Omega) \), \(\rho \geq 0 \) a.e. in \(\Omega \) and \(u \in H^1_0(\Omega)^d \). Assume that \((\rho, u)\) satisfies (1.2) (which is the weak form of \(\operatorname{div}(\rho u) = 0 \)). Then, for all \(\beta \in [1, \gamma] \),

\[
\int_\Omega \rho^\beta \operatorname{div}(u) \, dx = 0.
\] (2.1)

We are now in position to prove the following result (which gives the continuity, up to a subsequence, of the weak solution of (1.1) with respect to the data).

Theorem 2.2. Let \(f \in L^2(\Omega)^d \), \(M > 0 \) and \((f_n)_{n \in \mathbb{N}} \subset L^2(\Omega)^d \), \((M_n)_{n \in \mathbb{N}} \subset \mathbb{R}_+^* \) be two sequences satisfying \(f_n \to f \) weakly in \(L^2(\Omega)^d \) and \(M_n \to M \). For \(n \in \mathbb{N} \), let \((u_n, p_n, \rho_n) \) be a weak solution of (1.1) with \(f_n \) and \(M_n \) (instead of \(f \) and \(M \)). Then there exists a weak solution \((u, p, \rho)\) of (1.1) such that, up to a subsequence, as \(n \to \infty \),

- \(u_n \to u \) in \(L^2(\Omega)^d \) and weakly in \(H^1_0(\Omega)^d \),
- \(p_n \to p \) in \(L^q(\Omega) \) for any \(1 \leq q < 2 \) and weakly in \(L^2(\Omega) \),
- \(\rho_n \to \rho \) in \(L^\gamma(\Omega) \) for any \(1 \leq \gamma < 2 \gamma \) and weakly in \(L^{2\gamma}(\Omega) \).

Remark 2.3. Theorem 2.2 is also true for \(\gamma = 1 \), at least with only a weak convergence of \(p_n \) and \(\rho_n \). The proof of this result is simpler than the proof given below, since Step 4 is useless if \(\gamma = 1 \) for the passage to the limit in the equation of state.

Remark 2.4 (Forcing term involving the density). Theorem 2.2 is also true with \(f_n = \rho_n \mathbf{g} \) and \(\mathbf{g} \in L^\infty(\Omega)^d \) given (which correspond to a gravity effect). Then, the limit of \(f_n \) is \(f = \rho \mathbf{g} \) and the fact that \(f_n \) converges to \(f \) in \(L^2(\Omega)^d \) is not a hypothesis but is proven. The difference in the proof is essentially in the derivation of the estimates; see Remark 2.5 below.

Proof: The proof of Theorem 2.2 is composed of four steps. In the first one, we obtain some estimates on \((u_n, p_n, \rho_n)\). With these estimates we can assume the convergence, up to a subsequence, of \((u_n, p_n, \rho_n)\) to some \((u, p, \rho)\). Then, it is quite easy (Step 2) to prove that \((u, p, \rho)\) satisfies (1.2a)–(1.2b), but it is not easy to prove that \(p = \rho^\gamma \) (except for \(\gamma = 1 \)) since, using the estimates of Step 1, the
convergence of p_n and ρ_n is only weak. In Step 3, we prove the convergence of the integral of $p_n\rho_n$ to the integral of $p\rho$. This allows us in Step 4 to obtain the “strong” convergence of ρ_n (or p_n) and to conclude the proof.

Step 1. Estimates. The following equation is satisfied by u_n and p_n:

$$\int \Omega \nabla u_n : \nabla v \, dx - \int \Omega p_n \text{div}(v) \, dx = \int \Omega f_n \cdot v \, dx \quad \text{for all } v \in (H^1_0(\Omega))^d.$$

Taking $v = u_n$ in this relation and noting that $p_n = \rho_n^\beta$ a.e., we may use Lemma 2.1 (with ρ_n, u_n and $\beta = \gamma$) to obtain an estimate on u_n in $(H^1_0(\Omega))^d$.

Precisely speaking, there exists c_1, only depending on the L^2-bound of $(f_n)_{n\in\mathbb{N}}$ and on Ω, such that:

$$\|u_n\|_{H^1(\Omega)^d} \leq c_1.$$

In order to obtain a bound for p_n in $L^2(\Omega)$, we now choose v_n given by Lemma B.7 with $q = p_n - m(p_n)$, where $m(p_n)$ is the mean value of p_n. Taking $v = v_n$ in (2.2) and using $\int \Omega \text{div}(v_n) \, dx = 0$ gives:

$$\int \Omega (p_n - m(p_n))^2 \, dx = \int \Omega (f_n \cdot v_n - \nabla u_n : \nabla v_n) \, dx.$$

Since $\|v_n\|_{H^1(\Omega)^d} \leq c_2 \|p_n - m(p_n)\|_{L^2(\Omega)}$ and $\|u_n\|_{H^1(\Omega)^d} \leq c_1$, the preceding inequality leads to an estimate on $\|p_n - m(p_n)\|_{L^2(\Omega)}$, i.e. the existence of c_3, only depending on Ω and the L^2-bound of $(f_n)_{n\in\mathbb{N}}$, such that $\|p_n - m(p_n)\|_{L^2(\Omega)} \leq c_3$.

We now remark that:

$$\int \Omega p_n^{1/\gamma} \, dx = \int \Omega \rho_n \, dx \leq \sup\{M_k, k \in \mathbb{N}\}.$$

Then, using Lemma B.6 (with $q = 2$ and $r = 1/\gamma$), there exists c_4, only depending on the L^2-bound of $(f_n)_{n\in\mathbb{N}}$, the bound of $(M_n)_{n\in\mathbb{N}}$, γ and Ω such that:

$$\|p_n\|_{L^2(\Omega)} \leq c_4.$$

Finally, thanks to $p_n = \rho_n^\gamma$ a.e. in Ω, we also have an estimate on ρ_n in $L^{2\gamma}$, namely:

$$\|\rho_n\|_{L^{2\gamma}(\Omega)} \leq c_5 = c_4^{1/\gamma}.$$

This concludes Step 1.

Remark 2.5 (Forcing term involving the density). In the case where $f_n = \rho_n \, g$, with $g \in L^\infty(\Omega)^d$, the estimates on u_n, p_n and ρ_n are not obtained with the preceding proof, since the hypotheses of the theorem do not give a direct bound in $L^2(\Omega)^d$ of the sequence $(f_n)_{n\in\mathbb{N}}$. In order to obtain the estimates on u_n, p_n and ρ_n, we proceed as follows. We first remark that:

$$\|u_n\|_{H^1(\Omega)^d}^2 = \int \Omega \rho_n \, g \cdot u_n \, dx \leq \|u_n\|_{L^2(\Omega)^d} \|g\|_{L^\infty(\Omega)} \|p_n\|_{L^2(\Omega)}.$$

Hölder’s inequality gives

$$\|\rho_n\|_{L^2(\Omega)} \leq \|\rho_n\|_{L^1(\Omega)}^{1-\alpha} \|\rho_n\|_{L^{2\gamma}(\Omega)}^\alpha \leq M_1^{1-\alpha} \|\rho_n\|_{L^{2\gamma}(\Omega)}^\alpha$$

with $\alpha = \gamma/(2\gamma - 1)$. Then, there exists c_6 only depending on g, γ, Ω and on the bound of $(M_n)_{n\in\mathbb{N}}$ such that:

$$\|u_n\|_{H^1(\Omega)^d} \leq c_6 \left(\int \Omega \rho_n^{2\gamma} \, dx \right)^{1/(2(2\gamma - 1))} \leq c_6 \|\rho_n\|_{L^2(\Omega)}^{1/(2\gamma - 1)}.$$
Step 3. Proving such that \(\text{div}(v) = 0 \) and \(p = p_n - m(\rho_n) \) and using \(\int_\Omega \text{div}(v_n) \, dx = 0 \) gives
\[
\int_\Omega (p_n - m(\rho_n))^2 \, dx = \int_\Omega (\rho_n g \cdot v_n - \nabla u_n : \nabla v_n) \, dx.
\]
Then, we deduce, using (2.6):
\[
\int_\Omega (p_n - m(\rho_n))^2 \, dx \leq c_7 \| p_n \|^{1+1/(2\gamma-1)}_{L^2(\Omega)},
\]
with \(c_7 \) only depending on \(g, \gamma, \Omega \) and on the bound of \((M_n)_{n \in \mathbb{N}} \). This inequality, together with the fact that \((2\gamma - 1) > 1 \) and that \(\int_\Omega p_n^{1/\gamma} \, dx = M_n \), leads to an \(L^2 \)-bound on \(p_n \) and therefore to an \(L^{2\gamma} \)-bound on \(\rho_n \) and, with (2.6), to an \(H^1_0 \)-bound on \(u_n \).

Step 2. Passing to the limit on the equations (1.1a) and (1.1b). Thanks to the estimates obtained in Step 1, it is possible to assume (up to a subsequence) that, as \(n \to \infty \):
\[
\begin{align*}
u_n &\to \nu \text{ in } L^2(\Omega)^d \text{ and weakly in } H^1_0(\Omega)^d, \\
p_n &\to p \text{ weakly in } L^2(\Omega), \\
\rho_n &\to \rho \text{ weakly in } L^{2\gamma}(\Omega).
\end{align*}
\]
Passing to the limit in the first equation satisfied by \((u_n, p_n) \), we obtain that \((u, p) \) is a solution to (1.2a).

Since \(u_n \to u \) in \(L^2(\Omega)^d \) and \(\rho_n \to \rho \) weakly in \(L^2(\Omega) \), we have \(\rho_n u_n \to \rho u \) weakly in \(L^1(\Omega)^d \). Then \((\rho, u) \) is solution of (1.2b).

The weak convergence of \(\rho_n \) to \(\rho \) and the fact that \(\rho_n \geq 0 \) a.e. in \(\Omega \) gives that \(\rho \geq 0 \) a.e. in \(\Omega \) (indeed, taking \(\psi = 1_{\rho < 0} \) as a test function gives \(\int_\Omega \rho \psi \, dx = \lim_{n \to \infty} \int_\Omega \rho_n \psi \, dx \geq 0 \), which proves that \(\rho \psi = 0 \) a.e.). The weak convergence of \(\rho_n \) to \(\rho \) also gives (now taking \(\psi = 1 \) as a test function) that \(\int_\Omega \rho \, dx = M \).

Then (1.2c) is proven except for the fact that \(p = \rho^\gamma \) a.e. in \(\Omega \). This is the objective of the last two steps, where we also prove the strong convergence of \(\rho_n \) and \(p_n \).

Step 3. Proving \(\int_\Omega \rho_n p_n \, dx \to \int_\Omega p \rho \, dx \). Since the sequence \((\rho_n)_{n \in \mathbb{N}} \) is bounded in \(L^2(\Omega) \), Lemma 3.3 gives the existence of a bounded sequence \((v_n)_{n \in \mathbb{N}} \) in \(H^1(\Omega)^d \) such that \(\text{div}(v_n) = \rho_n \) and \(\text{curl}(v_n) = 0 \). It is possible to assume (up to a subsequence) that \(v_n \to v \) in \(L^2(\Omega)^d \) and weakly in \(H^1(\Omega)^d \). Passing to the limit gives \(\text{div}(v) = \rho \) and \(\text{curl}(v) = 0 \).

Let \(\varphi \in C^\infty_c(\Omega) \) (so that \(v_n \varphi \in H^1_0(\Omega)^d \)). Taking \(v = v_n \varphi \) in (2.2) leads to:
\[
\int_\Omega \nabla u_n : \nabla (v_n \varphi) \, dx - \int_\Omega p_n \text{div}(v_n \varphi) \, dx = \int_\Omega f_n \cdot (v_n \varphi) \, dx.
\]
From identity (1.4), we thus get:
\[
\int_\Omega \text{div}(u_n) \cdot \text{div}(v_n \varphi) \, dx + \int_\Omega \text{curl}(u_n) \cdot \text{curl}(v_n \varphi) \, dx
- \int_\Omega p_n \text{div}(v_n \varphi) \, dx = \int_\Omega f_n \cdot (v_n \varphi) \, dx.
\]
The choice of \mathbf{v}_n gives $\text{div}(\mathbf{v}_n \varphi) = \rho_n \varphi + \mathbf{v}_n \cdot \nabla \varphi$ and $\text{curl}(\mathbf{v}_n \varphi) = L(\varphi) \mathbf{v}_n$, where $L(\varphi)$ is a matrix with entries involving the first-order derivatives of φ. Then, the preceding equality yields:

$$\int_\Omega (\text{div}(\mathbf{u}_n) - \rho_n) \rho_n \varphi \, dx + \int_\Omega \text{div}(\mathbf{u}_n) \mathbf{v}_n \cdot \nabla \varphi \, dx$$

$$+ \int_\Omega \text{curl}(\mathbf{u}_n) \cdot L(\varphi) \mathbf{v}_n \, dx - \int_\Omega \rho_n \mathbf{v}_n \cdot \nabla \varphi \, dx = \int_\Omega \mathbf{f}_n \cdot (\mathbf{v}_n \varphi) \, dx.$$

Thanks to the weak convergence of \mathbf{u}_n in $H^1_0(\Omega)^d$ to \mathbf{u}, the weak convergence of ρ_n in $L^2(\Omega)$ to ρ, the weak convergence of \mathbf{f}_n in $L^2(\Omega)^d$ to \mathbf{f} and the convergence of \mathbf{v}_n in $L^2(\Omega)^d$ to \mathbf{v}, we obtain:

$$\lim_{n \to \infty} \int_\Omega (\text{div}(\mathbf{u}_n) - \rho_n) \rho_n \varphi \, dx = \int_\Omega \mathbf{f} \cdot (\mathbf{v} \varphi) \, dx - \int_\Omega \text{div}(\mathbf{u}) \mathbf{v} \cdot \nabla \varphi \, dx$$

$$- \int_\Omega \text{curl}(\mathbf{u}) \cdot L(\varphi) \mathbf{v} \, dx + \int_\Omega \rho \mathbf{v} \cdot \nabla \varphi \, dx.$$

But, thanks to Step 2, (\mathbf{u}, ρ) satisfies (1.2a), and thus:

$$\int_\Omega \nabla \mathbf{u} : \nabla (\mathbf{v} \varphi) \, dx - \int_\Omega \rho \text{div}(\mathbf{v} \varphi) \, dx = \int_\Omega \mathbf{f} \cdot (\mathbf{v} \varphi) \, dx,$$

or equivalently:

$$\int_\Omega \text{div}(\mathbf{u}) \text{div}(\mathbf{v} \varphi) \, dx + \int_\Omega \text{curl}(\mathbf{u}) \cdot \text{curl}(\mathbf{v} \varphi) \, dx - \int_\Omega \rho \text{div}(\mathbf{v} \varphi) \, dx = \int_\Omega \mathbf{f} \cdot (\mathbf{v} \varphi) \, dx,$$

which gives (using $\text{div}(\mathbf{v}) = \rho$ and $\text{curl}(\mathbf{v}) = 0$):

$$\int_\Omega (\text{div}(\mathbf{u}) - \rho) \rho \varphi \, dx + \int_\Omega \text{div}(\mathbf{u}) \mathbf{v} \cdot \nabla \varphi \, dx + \int_\Omega \text{curl}(\mathbf{u}) \cdot L(\varphi) \mathbf{v} \, dx$$

$$- \int_\Omega \rho \mathbf{v} \cdot \nabla \varphi \, dx = \int_\Omega \mathbf{f} \cdot (\mathbf{v} \varphi) \, dx.$$

Then, with (2.7), we obtain:

$$(2.8) \quad \lim_{n \to \infty} \int_\Omega (\rho_n - \text{div}(\mathbf{u}_n)) \rho_n \varphi \, dx = \int_\Omega (\rho - \text{div}(\mathbf{u})) \rho \varphi \, dx.$$

In (2.8), the function φ is an arbitrary element of $C_c^\infty(\Omega)$. We are going to prove now that it is possible to take $\varphi = 1$ in this relation. To this goal, we first remark that, thanks to $\gamma > 1$, the sequence $(\rho_n - \text{div}(\mathbf{u}_n))$ is equi-integrable (see Definition [B.1]). A simple proof of this assertion is obtained using the fact that $(\rho_n - \text{div}(\mathbf{u}_n))_{n \in \mathbb{N}}$ is bounded in $L^2(\Omega)$, $(\rho_n)_{n \in \mathbb{N}}$ is bounded in $L^{2^*}(\Omega)$ and the following inequality holds for any Borelian subset A of Ω:

$$\int_A |(\rho_n - \text{div}(\mathbf{u}_n))| \rho_n \, dx \leq \|\rho_n - \text{div}(\mathbf{u}_n)\|_{L^2(\Omega)} \|\rho_n\|_{L^{2^*}(\Omega)} |A|^{1/r},$$

with $\frac{1}{2} + \frac{1}{2\gamma} + \frac{1}{r} = 1$ and where $|A|$ stands for the measure of A.

Then, using Lemma [B.2] we get:

$$(2.9) \quad \lim_{n \to \infty} \int_\Omega (\rho_n - \text{div}(\mathbf{u}_n)) \rho_n \, dx = \int_\Omega (\rho - \text{div}(\mathbf{u})) \rho \, dx.$$
In order to conclude Step 3, it remains to use Lemma 2.1 (with $\beta = 1$), which is possible since $\text{div}(\rho_nu_n) = \text{div}(\rho u) = 0$. This gives:

$$\int_{\Omega} \rho_n \text{div}(u_n) \, dx = \int_{\Omega} \rho \text{div}(u) \, dx = 0.$$

Then, (2.9) yields:

$$\lim_{n \to \infty} \int_{\Omega} p_n \rho_n \, dx = \int_{\Omega} p \rho \, dx.$$

Remark 2.6. For Step 4, the equality in (2.10) is not necessary. It would be sufficient to have

$$\liminf_{n \to \infty} \int_{\Omega} p_n \rho_n \, dx \leq \int_{\Omega} p \rho \, dx,$$

and thus, instead of $\int_{\Omega} \rho_n\text{div}(u_n) \, dx = 0$:

$$\liminf_{n \to \infty} \int_{\Omega} \rho_n \text{div}(u_n) \, dx \leq 0.$$

Step 4. Passing to the limit on the EOS and strong convergence of ρ_n and p_n. For $n \in \mathbb{N}$, let $G_n = (\rho_n - \rho^\gamma)(\rho_n - \rho)$. For all $n \in \mathbb{N}$, the function G_n belongs to $L^1(\Omega)$ and $G_n \geq 0$ a.e. in Ω. Furthermore $G_n = (p_n - \rho^\gamma)(\rho_n - \rho) = p_n\rho_n - p_n\rho - \rho^\gamma \rho_n + \rho^\gamma \rho$ and

$$\int_{\Omega} G_n \, dx = \int_{\Omega} p_n \rho_n \, dx - \int_{\Omega} p_n \rho \, dx - \int_{\Omega} \rho^\gamma \rho_n \, dx + \int_{\Omega} \rho^\gamma \rho \, dx.$$

Using the weak convergence in $L^2(\Omega)$ of p_n to p and of ρ_n to ρ, the fact that $\rho, \rho^\gamma \in L^2(\Omega)$ and (2.10) give

$$\lim_{n \to \infty} \int_{\Omega} G_n \, dx = 0,$$

that is, $G_n \to 0$ in $L^1(\Omega)$. Then, up to a subsequence, we have $G_n \to 0$ a.e. in Ω. Since $y \to y^\gamma$ is an increasing function on \mathbb{R}^+, we then deduce that $\rho_n \to \rho$ a.e., as $n \to \infty$. Then, we also have $p_n = \rho_n^\gamma \to \rho^\gamma$ a.e.. Since $(\rho_n)_{n \in \mathbb{N}}$ is bounded in $L^{2\gamma}(\Omega)$ and $(\rho_n)_{n \in \mathbb{N}}$ is bounded in $L^2(\Omega)$, Lemma 2.9 (which is classical) gives, as $n \to \infty$:

- $\rho_n \to \rho$ in $L^q(\Omega)$ for all $1 \leq q < 2\gamma$,
- $p_n \to \rho^\gamma$ in $L^q(\Omega)$ for all $1 \leq q < 2$.

Since we already know that $p_n \to p$ weakly in $L^2(\Omega)$, we necessarily have (by uniqueness of the weak limit in $L^2(\Omega)$) that $p = \rho^\gamma$ a.e. in Ω. The proof of Theorem 2.2 is now complete. □

3. Discrete spaces and relevant lemmata

From now on, we suppose that the computational domain Ω is polygonal ($d = 2$) or polyhedral ($d = 3$). Let \mathcal{T} be a decomposition of the domain Ω in simplices, which we call after a triangulation of Ω, regardless of the space dimension. By $\mathcal{E}(K)$, we denote the set of the edges ($d = 2$) or faces ($d = 3$) σ of the element $K \in \mathcal{T}$; for short, each edge or face will be called an edge hereafter. The set of all edges of the mesh is denoted by \mathcal{E}; the set of edges included in the boundary of Ω is denoted by \mathcal{E}_{ext} and the set of internal edges (i.e. $\mathcal{E} \setminus \mathcal{E}_{\text{ext}}$) is denoted by
The decomposition \mathcal{T} is assumed to be regular in the usual sense of the finite element literature (e.g. [2]), and, in particular, \mathcal{T} satisfies the following properties: $\bar{\Omega} = \bigcup_{K \in \mathcal{T}} \bar{K}$; if $K, L \in \mathcal{T}$, then $K \cap L = \emptyset$, $K \cap L$ is a vertex or $K \cap L$ is a common edge of K and L, which is denoted by $K|L$. For each internal edge of the mesh $\sigma = K|L$, n_{KL} stands for the normal vector of σ, oriented from K to L (so that $n_{KL} = -n_{LK}$). By $|K|$ and $|\sigma|$ we denote the $(d$ and $d - 1$ dimensional) measures, respectively, of an element K and of an edge σ, and h_K and h_σ stand for the diameter of K and σ, respectively. We measure the regularity of the mesh through the parameter θ defined by

$$\theta = \inf \left\{ \frac{\xi_K}{h_K}, K \in \mathcal{T} \right\},$$

where ξ_K stands for the diameter of the largest ball included in K. Note that, $\forall \sigma \in \mathcal{E}_{\text{int}}, \sigma = K|L$, we have $h_\sigma \geq \xi_K \geq \theta h_K$ and $h_\sigma \leq h_L$ and so $\theta h_K \leq h_L \leq \theta^{-1}h_K$. Note also that, $\forall K \in \mathcal{T}, \forall \sigma \in \mathcal{E}(K)$, the inequality $h_\sigma |\sigma| \leq 2 \theta^{-d} |K|$ holds [4, relation (2.2)]. These relations will be used throughout this paper. Finally, as usual, we denote by h the quantity $\max_{K \in \mathcal{T}} h_K$.

The space discretization relies on the Crouzeix-Raviart element (see [3] for the seminal paper and, for instance, [4, pp. 199–201] for a synthetic presentation). The reference element is the unit d-simplex and the discrete functional space is the space P_1 of affine polynomials. The degrees of freedom are determined by the following set of edge functionals:

$$\{F_\sigma, \sigma \in \mathcal{E}(K)\}, \quad F_\sigma(v) = |\sigma|^{-1} \int_\sigma v \, d\gamma.$$

The mapping from the reference element to the actual one is the standard affine mapping. Finally, the continuity of the average value of a discrete function v across each edge of the mesh, $F_\sigma(v)$, is required; thus the discrete space V_h is defined as follows:

$$V_h = \{ v \in L^2(\Omega) : \forall K \in \mathcal{T}, v|_K \in P_1(K) ; \forall \sigma \in \mathcal{E}_{\text{int}}, \sigma = K|L, F_\sigma(v|_K) = F_\sigma(v|_L); \forall \sigma \in \mathcal{E}_{\text{ext}}, F_\sigma(v) = 0 \}.$$

The space of approximation for the velocity is the space W_h of vector-valued functions each component of which belongs to V_h: $W_h = (V_h)^d$. The pressure is approximated by the space L_h of piecewise constant functions:

$$L_h = \{ q \in L^2(\Omega) : q|_K = \text{constant, } \forall K \in \mathcal{T} \}.$$

Since only the continuity of the integral over each edge of the mesh is imposed, the functions of V_h are discontinuous through each edge; the discretization is thus nonconforming in $H^1(\Omega)^d$. We then define, for $1 \leq i \leq d$ and $u \in V_h$, $\partial_{h,i} u$ as the function of $L^2(\Omega)$ which is equal to the derivative of u with respect to the ith space variable almost everywhere. This notation allows us to define the discrete gradient, denoted by ∇_h, for both scalar and vector-valued discrete functions and the discrete divergence of vector-valued discrete functions, denoted by div_h.

The Crouzeix-Raviart pair of approximation spaces for the velocity and the pressure is inf-sup stable, in the usual sense for “piecewise H^1” discrete velocities; i.e., there exists $c_1 > 0$ only depending on Ω and, in a nonincreasing way, on θ, such
We denote by \(\phi \in \mathcal{W}(\Omega) \) such that \(\Omega \). We also define a discrete semi-norm on \(\mathcal{W}(\Omega) \) of freedom reads:

\[
(3.4)
\]

\[
\| \phi \|_{1,b}^2 = \sum_{K \in T} \int_K |\nabla \phi|^2 \, dx = \int_{\Omega} |\nabla_h \phi|^2 \, dx.
\]

This norm is known to control the \(L^2 \)-norm by a Poincaré inequality (e.g. [3] lemma 3.31). We also define a discrete semi-norm on \(L_h \), similar to the usual \(H^1 \) semi-norm used in the finite volume context:

\[
\forall p \in L_h, \quad |p|^2 = \sum_{r \in \mathcal{E} \cap \{K \in T\}} |p|_{K}^2 (p_K - p_L)^2.
\]

From the definition (3.2), each velocity degree of freedom may be indexed by the number of the component and the associated edge; thus the set of velocity degrees of freedom reads:

\[
\{v_{\sigma,i}, \, \sigma \in \mathcal{E}_{\text{int}}, \, 1 \leq i \leq d\}.
\]

We denote by \(\varphi_\sigma \) the usual Crouzeix-Raviart shape function associated to \(\sigma \), i.e. the scalar function of \(V_h \) such that \(F_\sigma'(\varphi_\sigma) = 1 \) and \(F_\sigma''(\varphi_\sigma) = 0, \forall \sigma' \in \mathcal{E} \setminus \{\sigma\} \).

Similarly, each degree of freedom for the pressure is associated to a cell \(K \), and the set of pressure degrees of freedom is denoted by \(\{p_K, \, K \in T\} \).

We define by \(r_h \) the following interpolation operator:

\[
(3.4)
\]

\[
r_h : \begin{array}{c}
H^1_0(\Omega) \rightarrow V_h \\
h \mapsto r_h h = \sum_{\sigma \in \mathcal{E}} F_\sigma(h) \varphi_\sigma = \sum_{\sigma \in \mathcal{E}} |\sigma|^{-1} \left(\int_{\Omega} h \, dx \right) \varphi_\sigma.
\end{array}
\]

This operator naturally extends to vector-valued functions (i.e. to perform the interpolation from \(H^1_0(\Omega)^d \) to \(\mathcal{W}(\Omega) \)), and we keep the same notation \(r_h \) for both the scalar and vector cases. The properties of \(r_h \) are gathered in the following lemma. They are proven in [3].

Theorem 3.1. Let \(\theta_0 > 0 \) and let \(T \) be a triangulation of the computational domain \(\Omega \) such that \(\theta \geq \theta_0 \), where \(\theta \) is defined by (3.1). The interpolation operator \(r_h \) enjoys the following properties:

1. **preservation of the divergence:**

\[
\forall v \in H^1_0(\Omega)^d, \quad \forall q \in L_h, \quad \int_{\Omega} q \, \text{div}(r_h v) \, dx = \int_{\Omega} q \, \text{div}(v) \, dx,
\]

2. **stability:**

\[
\forall v \in H^1_0(\Omega), \quad \|r_h v\|_{1,b} \leq c_1(\theta_0) \|v\|_{H^1(\Omega)}.
\]

3. **approximation properties:**

\[
\forall v \in H^2(\Omega) \cap H^1_0(\Omega), \quad \forall K \in T,
\]

\[
\|v - r_h v\|_{L^2(K)} + h_K \|\nabla_h (v - r_h v)\|_{L^2(K)} \leq c_2(\theta_0) h_K^2 \|v\|_{H^2(K)}.
\]
In both of the above inequalities, the notation $c_i(\theta_0)$ means that the real number c_i only depends on θ_0 and Ω, and, in particular, does not depend on the parameter h characterizing the size of the cells; this notation will be kept throughout the paper.

The following compactness result was proven in \cite[Theorem 3.3]{EYMARD2014658}.

Theorem 3.2. Let $(v^{(n)})_{n \in \mathbb{N}}$ be a sequence of functions satisfying the following assumptions:

1. $\forall n \in \mathbb{N}$, there exists a triangulation of the domain $T^{(n)}$ such that $v^{(n)} \in V_h^{(n)}$, where $V_h^{(n)}$ is the space of Crouzeix-Raviart discrete functions associated to $T^{(n)}$, as defined by \cite[3.3]{EYMARD2014658}, and the parameter $\theta^{(n)}$ characterizing the regularity of $T^{(n)}$ is bounded away from zero independently of n,
2. the sequence $(v^{(n)})_{n \in \mathbb{N}}$ is uniformly bounded with respect to the broken Sobolev H^1 semi-norm, i.e.:

$$\forall n \in \mathbb{N}, \quad \|v^{(n)}\|_{1,b} \leq C,$$

where C is a constant real number and $\|\cdot\|_{1,b}$ stands for the broken Sobolev H^1 semi-norm associated to $T^{(n)}$ (with a slight abuse of notation, namely dropping, for short, the index (n) pointing the dependence of the norm with respect to the mesh).

Then, when $n \to \infty$, possibly up to the extraction of a subsequence, the sequence $(v^{(n)})_{n \in \mathbb{N}}$ converges (strongly) in $L^2(\Omega)$ to a limit \tilde{v} such that $\tilde{v} \in H_0^1(\Omega)$.

Finally, the following technical lemma, together with its proof, can be found in \cite[Lemma 2.4]{EYMARD2014658}.

Lemma 3.3. Let $\theta_0 > 0$ and let T be a triangulation of the computational domain Ω such that $\theta \geq \theta_0$, where θ is defined by \cite[3.1]{EYMARD2014658}; let $(a_{\sigma})_{\sigma \in \mathcal{E}_{int}}$ be a family of real numbers such that $\forall \sigma \in \mathcal{E}_{int}$, $|a_{\sigma}| \leq 1$ and let v be a function of the Crouzeix-Raviart space V_h associated to T. Then the following bound holds:

$$\sum_{\sigma \in \mathcal{E}_{int}} \left| \int_{\partial T_{\sigma}} a_{\sigma} [v] f \, d\gamma \right| \leq c(\theta_0) h \|v\|_{1,b} \|f\|_{H^1(\Omega)}, \quad \forall f \in H^1_0(\Omega),$$

where $[v]$ stands for the jump of the function v across the edge.

4. **The numerical scheme**

Let ρ^* be the mean density, i.e., $\rho^* = M/|\Omega|$, where $|\Omega|$ stands for the measure of the domain Ω. We consider the following numerical scheme for the discretization of Problem (1.1):

\begin{align}
(4.1a) \quad & \forall \mathbf{v} \in \mathbf{W}_h, \quad \int_{\Omega} \nabla_h \mathbf{u} : \nabla_h \mathbf{v} \, dx - \int_{\Omega} p \, \text{div}_h(\mathbf{v}) \, dx = \int_{\Omega} \mathbf{f} : \mathbf{v} \, dx, \\
(4.1b) \quad & \forall K \in T, \quad \sum_{\sigma = K|L} v_{\sigma,K}^{+} \rho_K - v_{\sigma,K}^{-} \rho_K = (T_{\text{stab},1})_K + (T_{\text{stab},2})_K = 0, \\
(4.1c) \quad & \forall K \in T, \quad p_K = \tilde{\rho}_K,
\end{align}

where:

- $v_{\sigma,K}^{+}$, $v_{\sigma,K}^{-}$ and $v_{\sigma,K}$ stand respectively for:

\begin{align}
(4.2) \quad & v_{\sigma,K} = |\sigma| \cdot n_{KL}, \quad v_{\sigma,K}^{+} = \max(v_{\sigma,K}, 0), \quad v_{\sigma,K}^{-} = -\min(v_{\sigma,K}, 0), \\
& \text{so that } v_{\sigma,K} = v_{\sigma,K}^{+} - v_{\sigma,K}^{-};
\end{align}
the stabilization terms read, \(\forall K \in \mathcal{T} \):

\[
(T_{\text{stab},1})_K = h^\alpha |K| \left(\rho_K - \rho^* \right),
\]

\[
(T_{\text{stab},2})_K = \sum_{\sigma = K \cup L} (h_K + h_L)^\zeta \frac{|\sigma|}{h_\sigma} \left(|\rho_K| + |\rho_L| \right)^\zeta \left(\rho_K - \rho_L \right),
\]

with \(\zeta = \max(0, 2 - \gamma) \).

Equation (4.1a) may be considered as the standard finite element discretization of Equation (1.2a). Since the pressure is piecewise constant, the finite element discretization of Relation (1.2b), i.e. the mass balance, is similar to a finite volume formulation, in which we introduce the first-order upwinding and two stabilizing terms. The first one, i.e. \(T_{\text{stab},1} \), guarantees that the integral of the density over the computational domain is always \(M \) (this can easily be seen by summing (4.1b) for \(K \in \mathcal{T} \)). The second one, i.e. \(T_{\text{stab},2} \), is useful in the convergence analysis. It may be seen as a finite volume analogue of a continuous term of the form \(\text{div}(\rho^\xi \nabla \rho) \) weighted by a mesh-dependent coefficient tending to zero as \(h^\xi \).

Note, however, that \(h_\sigma \) is not the distance which is encountered when diffusive terms are approximated by the two-points finite volume method; consequently, the usual restriction for the mesh (namely, the Delaunay condition) is not required here. We take \(\alpha \geq 1 \) and the convergence analysis uses \(0 < \xi < 2 \). Finally, any solution to (4.1) satisfies \(\rho > 0 \) (see Theorem 5.3), which gives sense to the equation of state (4.1c).

Remark 4.1 (Forcing term involving the density). To deal with a right hand side in the first equation of the continuous problem (Equation (1.1a)) reading \(\rho g \) with \(g \in L^\infty(\Omega)^d \), Equation (4.1a) must simply be changed to:

\[
(4.4) \quad \forall \mathbf{v} \in W_h, \quad \int_{\Omega} \nabla_h \mathbf{u} : \nabla_h \mathbf{v} \, dx - \int_{\Omega} p \, \text{div}_h(\mathbf{v}) \, dx = \int_{\Omega} \rho \mathbf{g} : \mathbf{v} \, dx.
\]

Remark 4.2 (Solution of the nonlinear algebraic system (4.1)). System (4.1) is a (potentially large) nonlinear algebraic system, and the design of an algorithm for its solution is not an easy task. To this purpose, one of the following iterative processes may perhaps be a starting point. First, one can remark that the fixed point iteration which consists in (i) solving (4.1a) for \(\mathbf{u} \) with a fixed pressure, (ii) solving (4.1b) for \(\rho \) with the obtained velocity and (iii) finally computing the pressure from the equation of state is well-posed and stable; this result is used, for a slightly different (and essentially more complex) problem in [8, proof of Lemma 3.2] to prove, by a Brouwer fixed point argument, the existence of a solution. Second, one will find in [10, section 4.1] an extension to variable density flows (but with a pressure-independent density) of the augmented Lagrangian technique classical for incompressible flow problems.

5. Existence and convergence of approximate solutions

5.1. Existence of a solution and a priori estimates. We begin this section by a preliminary lemma, the proof of which can be found in [6, section 2]. This result may be seen as a discrete version of the identity introduced in the theory of renormalized solutions of the transport equation [11, 12].

Lemma 5.1. Let \(\rho \) be a nonnegative function of \(L_h \), \(\mathbf{u} \) be a function of \(W_h \) and \(v_{\sigma,K}^+, v_{\sigma,K}^-, v_{\sigma,K} \) be given by Equation (4.2). Let \(\phi : [0, +\infty) \rightarrow \mathbb{R} \) be a once
continuously differentiable convex function. Then the following estimate holds:

\[\sum_{K \in \mathcal{T}} \phi'(\rho_K) \left(\sum_{\sigma = K \mid L} v^+_{\sigma, K} \rho_K - v^-_{\sigma, K} \rho_L \right) \geq \int_{\Omega} \left(\rho \phi'(\rho) - \phi(\rho) \right) \text{div}_h(u) \, dx. \]

We are now in position to prove the following result, which is a discrete analog of Lemma 2.1.

Lemma 5.2. Let \(\mathcal{T} \) be a triangulation of the computational domain \(\Omega \) and \((u, \rho) \in W_h \times L_h\) satisfy the second equation of the scheme, i.e. Equation (4.1b). We assume \(\rho \geq 0 \). Then, for all \(\beta \geq 1 \):

\[\int_{\Omega} \rho^\beta \text{div}_h(u) \, dx \leq c h^\alpha, \]

where the real number \(c \) only depends on \(\beta \), the domain \(\Omega \) and \(M \).

Proof. Let us first consider the case \(\beta > 1 \). Let the function \(\phi \) be defined by \(\phi(s) = s^\beta \) (\(\phi \) is indeed a continuously differentiable convex function over \([0, +\infty)\)). Multiplying (4.1b) by \(\phi'(\rho_K) \), summing over \(K \in \mathcal{T} \) and applying Lemma 5.1 yields

\[T_1 + T_2 + T_3 \leq 0 \]

with

\[T_1 = (\beta - 1) \int_{\Omega} \rho^\beta \text{div}_h(u) \, dx, \]

\[T_2 = \beta \sum_{K \in \mathcal{T}} h^\alpha |K| \rho_K^{\beta-1} (\rho_K - \rho^*), \]

\[T_3 = \beta \sum_{K \in \mathcal{T}} \rho_K^{\beta-1} \sum_{\sigma = K \mid L} (h_K + h_L)^\epsilon \frac{|\sigma|}{h_\sigma}(\rho_K + \rho_L)^\zeta (\rho_K - \rho_L). \]

By convexity of the function \(\phi \), we have

\[T_2 \geq h^\alpha \sum_{K \in \mathcal{T}} |K| \left(\rho_K^\beta - (\rho^*)^\beta \right) \geq -|\Omega| (\rho^*)^\beta h^\alpha. \]

Reordering the sums in \(T_3 \), we get

\[T_3 = \beta \sum_{\xi \in \mathcal{E}_{\text{int}}, \sigma = K \mid L} (h_K + h_L)^\epsilon \frac{|\sigma|}{h_\sigma}(\rho_K + \rho_L)^\zeta (\rho_K - \rho_L) \left(\rho_K^{\beta-1} - \rho_L^{\beta-1} \right), \]

and so \(T_3 \geq 0 \). Finally, we thus get

\[\int_{\Omega} \rho^\beta \text{div}_h(u) \, dx \leq \frac{1}{\beta - 1} |\Omega| (\rho^*)^\beta h^\alpha, \]

which concludes the proof for \(\beta > 1 \).

We now turn to the case \(\beta = 1 \). Let \(\epsilon \) be a positive real number. Now choosing \(\phi(s) = s \log(s + \epsilon) \) (so \(s \phi'(s) - \phi(s) = s^2/(s + \epsilon) \)) yields by the same arguments:

\[\int_{\Omega} \frac{\rho^2}{\rho + \epsilon} \text{div}_h(u) \, dx \leq \rho^* \log(\rho^* + \epsilon) |\Omega| h^\alpha; \]

thus, since for any nonnegative real number \(s \), \(|s - \frac{s^2}{s + \epsilon}| = \epsilon \frac{s}{s + \epsilon} \leq \epsilon \):

\[\int_{\Omega} \rho \text{div}_h(u) \, dx \leq \rho^* \log(\rho^* + \epsilon) |\Omega| h^\alpha + \epsilon \int_{\Omega} |\text{div}_h(u)| \, dx. \]
Since $\text{div}_h(\mathbf{u})$ is bounded in $L^1(\Omega)$ (\mathbf{u} is a discrete function) and $\rho^* > 0$, letting ϵ tend to zero yields the conclusion. □

The existence of a solution to (4.1) follows, with minor changes to cope with the diffusion stabilization term $T_{\text{stab},2}$, from the theory developed in [6, section 2]. In this latter paper, it is obtained for fairly general equations of state by a topological degree argument. We only give here the obtained result, together with a proof of the a priori estimates verified by the solution, and we refer to [6] for the proof of existence. The following estimate may be seen as an equivalent one for the discrete case of Step 1 of the proof of Theorem 2.2.

Theorem 5.3. Let $\theta_0 > 0$ and let \mathcal{T} be a triangulation of the computational domain Ω such that $\theta \geq \theta_0$, where θ is defined by (5.1). The problem (4.1) admits at least one solution $(\mathbf{u}, p, \rho) \in W_h^0 \times L_h \times L_h^*$, and any possible solution is such that $p_K > 0$ and $\rho_K > 0$, $\forall K \in \mathcal{T}$, and satisfies:

\[
\|\mathbf{u}\|_{1,b} + \|p\|_{L^2(\Omega)} + \|\rho\|_{L^2(\Omega)} + h^{\xi/2} |\rho|_{\mathcal{T}} \leq C,
\]

where the real number C only depends on the data of the problem Ω, f, M and on θ_0.

Proof. From [6, section 2], we know that (4.1) admits at least a solution and that, for any solution, the pressure and the density are positive. Let $(\mathbf{u}, p, \rho) \in W_h^0 \times L_h \times L_h^*$ be such a solution. On the one hand, taking \mathbf{u} as a test function in (4.1a) yields:

\[
\|\mathbf{u}\|_{1,b}^2 - \int_\Omega p \text{div}_h(\mathbf{u}) \, dx = \int_\Omega f \cdot \mathbf{u} \, dx.
\]

On the other hand, multiplying (4.1b) by $\gamma \rho_K^{\gamma-1}/(\gamma - 1)$, summing over $K \in \mathcal{T}$ and invoking Lemma 5.2 yields:

\[
\int_\Omega p \text{div}_h(\mathbf{u}) \, dx + \frac{h^\alpha}{\gamma - 1} \sum_{K \in \mathcal{T}} |K| (\rho_K^{\gamma} - (\rho^*)^\gamma) + \frac{\gamma}{\gamma - 1} \sum_{K \in \mathcal{T}} \rho_K^{\gamma-1} (T_{\text{stab},2})_K \leq 0.
\]

Summing these two relations yields:

\[
\|\mathbf{u}\|_{1,b}^2 + \frac{\gamma}{\gamma - 1} \sum_{K \in \mathcal{T}} \rho_K^{\gamma-1} (T_{\text{stab},2})_K \leq \int_\Omega f \cdot \mathbf{u} \, dx + \frac{1}{\gamma - 1} |\Omega| (\rho^*)^\gamma h^\alpha.
\]

As in the proof of Lemma 5.2, the last term on the left hand side is easily seen to be nonnegative. Using Poincaré and Young’s inequalities, we thus obtain a control on $\|\mathbf{u}\|_{1,b}$. Using the inf-sup stability of the discretization, we hence get from (4.1a) a control of $\|p - m(p)\|_{L^2(\Omega)}$ (where $m(p)$ stands for the mean value of p over Ω). Finally, by summing equation (4.1b) for $K \in \mathcal{T}$, we obtain that the integral of ρ over Ω is M, and, as in the continuous case, this yields an estimate for $\|p\|_{L^2(\Omega)}$ (or $\|\rho\|_{L^2(\Omega)}$) by Lemma 5.3.

To conclude the proof, we now need to estimate $|\rho|_{\mathcal{T}}$. Let us first suppose that $\gamma < 2$. By reordering the summations, we get in this case:

\[
\sum_{K \in \mathcal{T}} \rho_K^{\gamma-1} (T_{\text{stab},2})_K = \sum_{\sigma \in \mathcal{E}_\text{int}, \sigma = K^L} (h_K + h_L)^\xi \left| \frac{\sigma}{h_\sigma} \right| (\rho_K + \rho_L)^{2-\gamma} (\rho_K - \rho_L) \left(\rho_K^{\gamma-1} - \rho_L^{\gamma-1} \right).
\]
where, without loss of generality, we can assume that $\rho_K \geq \rho_L$. Since, for $\gamma < 2$, the function $s \mapsto s^{\gamma - 1}$ is concave, we have
\[
\left(\rho_K^{\gamma - 1} - \rho_L^{\gamma - 1}\right) \geq (\gamma - 1) \rho_K^{\gamma - 2} (\rho_K - \rho_L),
\]
and thus
\[
\sum_{K \in T} \rho_K^{\gamma - 1} (T_{\text{stab}, 2})_K \geq (\gamma - 1) \sum_{\sigma \in E_{\text{int}}, \sigma = K|L} (h_K + h_L)^{\xi} \frac{|\sigma|}{h_\sigma} (\rho_K - \rho_L)^2.
\]
Using this inequality in \(\ref{eq:5.5}\) concludes the proof for $\gamma < 2$. If $\gamma \geq 2$, multiplying Equation \(\ref{eq:4.1a}\) by ρ_K, summing over $K \in T$ and using Lemma \ref{lem:5.2} yields:
\[
\frac{1}{2} \int_{\Omega} \rho^2 \text{div}_h(u) \, dx + \frac{1}{2} h^\alpha \sum_{K \in T} |K| (\rho^2 - (\rho^*)^2)
\]
\[
+ \sum_{\sigma \in E_{\text{int}}, \sigma = K|L} (h_K + h_L)^{\xi} \frac{|\sigma|}{h_\sigma} (\rho_K - \rho_L)^2 \leq 0,
\]
which concludes the proof since, for $\gamma \geq 2$, ρ is bounded in $L^4(\Omega)$. \qed

Remark 5.4 (Forcing term involving the density). This estimate also holds in the case where $f = \rho \mathbf{g}$, replacing Equation \(\ref{eq:1.1a}\) by Equation \(\ref{eq:1.4}\). It is proved by modifying the above arguments as in the continuous case (see Remark \ref{rem:2.5}).

5.2. Passing to the limit in the mass and momentum balance equations.
The following result may be seen as the equivalent result for the discrete case of Step 2 of the proof of Theorem \ref{thm:2.2}.

Proposition 5.5. Let \((T^{(n)})_{n \in \mathbb{N}}\) be a given a sequence of triangulations of Ω. We assume that h_n tends to zero when $n \to \infty$. In addition, we assume that the sequence of discretizations is regular, in the sense that there exists $\theta_0 > 0$ such that $\theta_n \geq \theta_0$, $\forall n \in \mathbb{N}$. For $n \in \mathbb{N}$, we denote by $W_h^{(n)}$ and $L_h^{(n)}$, respectively, the discrete spaces for the velocity and the pressure or the density associated to $T^{(n)}$ and by $(u_n, p_n) \in W_h^{(n)} \times L_h^{(n)}$ a corresponding solution to the discrete problem \(\ref{eq:1.1}\), with $\alpha \geq 1$ and $0 < \xi < 2$. Then:

1. up to the extraction of a subsequence, the sequence $(u_n)_{n \in \mathbb{N}}$ (strongly) converges in $L^2(\Omega)^d$ to a limit $u \in H_0^1(\Omega)^d$ when $n \to \infty$, $(p_n)_{n \in \mathbb{N}}$ converges to p weakly in $L^2(\Omega)$ and p_n converges to p weakly in $L^{2\xi}(\Omega)$;

2. (u, p, ρ) satisfies the equations \(\ref{eq:1.2a}\) and \(\ref{eq:1.2b}\) of the weak continuous problem, $\rho \geq 0$ a.e. in Ω and $\int_{\Omega} \rho \, dx = M$.

Remark 5.6 (Forcing term involving the density). This convergence result also holds, without any additional difficulty, in the case where $f = \rho \mathbf{g}$, replacing Equation \(\ref{eq:1.1a}\) by Equation \(\ref{eq:1.4}\).

Proof. The convergence (up to the extraction of a subsequence) of the sequence (u_n, p_n, ρ_n) is a consequence of the uniform (with respect to n) estimate of Theorem \ref{thm:5.3}, applying Theorem \ref{thm:5.2} to each component $u_i^{(n)}$, $1 \leq i \leq d$. The proof that the limit satisfies $\rho \geq 0$ a.e. in Ω, $\int_{\Omega} \rho \, dx = M$ and Equation \(\ref{eq:1.2a}\) is strictly the same as the proof of the same result for a linear equation of state, i.e. Theorem 6.1 in \cite{7}. For Equation \(\ref{eq:1.2b}\), it only differs from this latter by the treatment of the
such that the vertices of the mesh. For \(a \in \mathcal{A} \), we denote by \(\mathcal{N}_a \subset \mathcal{T} \) the set of the elements \(K \in \mathcal{T} \) of which \(a \) is a vertex. Let \(q \) be a function of \(L_h \). We denote by \(i_h q \) the function defined as follows:

\[
(5.3) \quad \begin{align*}
 i_h q \in C^0(\Omega), \\
 \forall K \in \mathcal{T}, \text{ the restriction to } K \text{ of } i_h q \text{ is affine}, \\
 \forall a \in \mathcal{A}, \quad i_h q(a) = \frac{1}{\text{card}(\mathcal{N}_a)} \sum_{K \in \mathcal{N}_a} q_K.
\end{align*}
\]

In other words, the function \(i_h q \) belongs to the usual space of piecewise affine continuous finite element functions (often called the \(P_1 \) finite element space), and corresponds to some regularization of \(q \). The operator \(i_h \) satisfies the following stability and approximation results.

Lemma 5.8. Let \(\theta_0 > 0 \) and let \(\mathcal{T} \) be a triangulation of the computational domain \(\Omega \) such that \(\theta \geq \theta_0 \), where \(\theta \) is defined by \((3.1) \). Let \(q \in L_h \) be given. Then:

\[
(5.4) \quad \| i_h q \|_{H^1(\Omega)} \leq c_s |q|_{\mathcal{T}},
\]

\[
(5.5) \quad \| i_h q - q \|_{L^2(\Omega)} \leq c_a \ h |q|_{\mathcal{T}},
\]

where the real numbers \(c_s \) and \(c_a \) only depend on \(\theta_0 \).

Proof. Let \(q \) be a function of \(L_h \). For \(K \in \mathcal{T} \), we denote by \(\mathcal{A}_K \) the set of the vertices of \(K \) and, for \(a \in \mathcal{A} \), we denote by \(\psi_a \) the \(P_1 \) shape function associated to \(a \). By definition of the operator \(i_h \), we get

\[
|i_h q|^2_{H^1(\Omega)} = \sum_{K \in \mathcal{T}} \int_K \left(\sum_{a \in \mathcal{A}_K} i_h q(a) \ \nabla \psi_a(x) \right)^2 \ dx.
\]

Since, over each cell \(K \), we have \(\sum_{a \in \mathcal{A}_K} \psi_a(x) = 1 \), the preceding relation yields:

\[
|i_h q|^2_{H^1(\Omega)} = \sum_{K \in \mathcal{T}} \int_K \left(\sum_{a \in \mathcal{A}_K} (i_h q(a) - q_K) \ \nabla \psi_a(x) \right)^2 \ dx
\]

\[
= \sum_{K \in \mathcal{T}} \int_K \left(\sum_{a \in \mathcal{A}_K} \frac{1}{\text{card}(\mathcal{N}_a)} \sum_{L \in \mathcal{N}_a} (q_L - q_K) \ \nabla \psi_a(x) \right)^2 \ dx
\]

and so

\[
|i_h q|^2_{H^1(\Omega)} \leq c_1 \sum_{K \in \mathcal{T}} \frac{|K|}{h_K^2} \sum_{a \in \mathcal{A}_K} \sum_{L \in \mathcal{N}_a} (q_L - q_K)^2,
\]

where the real number \(c_1 \) only depends on the regularity of the mesh (i.e. the parameter \(\theta_0 \)). Since, still by regularity of the mesh, a vertex belongs to a bounded number of cells, the quantity \(q_L - q_K \), for \(L \in \mathcal{N}_a \) and \(a \in \mathcal{A}_K \), can be developed as
a sum of differences $q_M - q_N$ involving a bounded number of terms and such that M and N are two neighbouring control volumes. Invoking once again the regularity of the mesh (and, in particular, the fact that, for two neighbouring control volumes K and L, the ratio h_K/h_L is bounded), we obtain, for each edge a separating two cells involved in one of the terms of this sum, the inequality $|K|/h_K^2 \leq c_2 |a|/h_a$. This yields the estimate [5.4] of this lemma.

We now turn to the bound [5.3]. We have

$$\|i_h q - q\|_{L^2(\Omega)}^2 = \sum_{K \in \mathcal{T}} \int_K \left(q_K - \sum_{a \in A_K} i_h q(a) \psi_a(x) \right)^2 \, dx,$$

and so, once again since $\forall x \in K$, $\sum_{a \in A_K} \psi_a(x) = 1$:

$$\|i_h q - q\|_{L^2(\Omega)}^2 = \sum_{K \in \mathcal{T}} \int_K \left(\sum_{a \in A_K} (q_K - i_h q(a)) \psi_a(x) \right)^2 \, dx$$

$$= \sum_{K \in \mathcal{T}} \int_K \left(\sum_{a \in A_K} \frac{1}{\text{card}(N_a)} \sum_{L \in N_a} (q_K - q_L) \psi_a(x) \right)^2 \, dx$$

$$\leq c_3 \sum_{K \in \mathcal{T}} |K| \sum_{a \in A_K} \sum_{L \in N_a} (q_K - q_L)^2,$$

where c_3 only depends on the regularity of the mesh. The result then follows by the same arguments as previously (developing the difference $q_K - q_L$ as a sum of differences between the values of q over two neighbouring cells and invoking the regularity of the mesh).

\[\square \]

Proposition 5.9. Let $(\mathcal{T}^{(n)})_{n \in \mathbb{N}}$ be a sequence of discretizations satisfying the same assumptions as in Proposition [5.3a] and let $(u_n, p_n, \rho_n)_{n \in \mathbb{N}}$ be a corresponding sequence of discrete solutions. Let $(u, p, \rho) \in H^1_0(\Omega)^d \times L^2(\Omega) \times L^2(\Omega)$ be the limit (up to the extraction of a subsequence and in the sense of Proposition [5.4]) of this sequence of solutions when $n \to \infty$. Let $(q_n)_{n \in \mathbb{N}}$ be a sequence of functions such that, $\forall n \in \mathbb{N}$, $q_n \in L^1(\Omega)$ and

$$|q_n|_{\mathcal{T}} \leq c \, h_n^{-\eta},$$

where c is a positive real number and η is such that $\eta < 1$. We assume in addition that the sequence $(q_n)_{n \in \mathbb{N}}$ is bounded in $L^1(\Omega)$ and weakly converges in $L^2(\Omega)$ to $q \in L^2(\Omega)$. Then:

$$\forall \varphi \in C_c^\infty(\Omega), \quad \lim_{n \to \infty} \int_\Omega (\text{div}(u_n) - p_n) q_n \varphi \, dx = \int_\Omega (\text{div}(u) - p) q \varphi \, dx.$$

Proof: Throughout this proof, we denote by c_i, $i \in \mathbb{N}$, a positive real number possibly depending on θ_0, Ω and the data of the problem, but independent of n.

Let us consider the sequence $(i_h q_n)_{n \in \mathbb{N}}$ of functions of $H^1(\Omega)$, where i_h is the operator given by Definition [5.3d]. Since q_n is bounded in $L^2(\Omega)$ and $|q_n|_{\mathcal{T}} \leq C h_n^{-\eta}$, thanks to properties [5.3a], [5.3b] and the regularity of the sequence of discretizations $(\forall n \in \mathbb{N}, \theta_n \geq \theta)$, we have:

$$\|i_h q_n\|_{L^2(\Omega)} \leq c_1, \quad \|i_h q_n\|_{H^1(\Omega)} \leq c_2 \, h_n^{-\eta} \quad \text{and} \quad \|i_h q_n - q_n\|_{L^2(\Omega)} \leq c_3 \, h_n^{-\eta}.$$

Let $(w_n)_{n \in \mathbb{N}}$ be the sequence of functions of $H^1(\Omega)^d$ defined from $(i_h q_n)_{n \in \mathbb{N}}$ by Lemma [5.3]. We thus have:

$$w_n \in H^2(\Omega)^d, \quad \text{curl}(w_n) = 0 \quad \text{and} \quad \text{div}(w_n) = i_h q_n \text{ a.e. in } \Omega.$$
In addition, inequalities (5.6) yield
\[\| w_n \|_{H^1(\Omega)^d} \leq c_4 \text{ and } \| w_n \|_{H^2(\Omega)^d} \leq c_5 h_n^{-\eta}, \]
and thus, up to the extraction of a subsequence, the sequence \((w_n)_{n \in \mathbb{N}}\) converges to \(w \in H^1(\Omega)^d\) (strongly) in \(L^2(\Omega)^d\) and weakly in \(H^1(\Omega)^d\); in addition, \(w\) satisfies \(\text{curl}(w) = 0\) and \(\text{div}(w) = q\) a.e. in \(\Omega\).

Let \(\varphi\) be a function of \(C^{\infty}_c(\Omega)\), and let us take \(r_h^{(n)}(\varphi w_n)\) as a test function in the first relation of the discrete problem (5.1a) associated to \(T^{(n)}\):
\[\int_{\Omega} \nabla_h u_n \cdot \nabla h(r_h^{(n)}(\varphi w_n)) \, dx - \int_{\Omega} p_n \, \text{div}_h(r_h^{(n)}(\varphi w_n)) \, dx = \int_{\Omega} f \cdot (r_h^{(n)}(\varphi w_n)) \, dx. \]

We thus get
\[(5.7) \quad \int_{\Omega} \nabla_h u_n : \nabla h(r_h^{(n)}(\varphi w_n)) \, dx - \int_{\Omega} p_n \, \text{div}(\varphi w_n) \, dx = \int_{\Omega} f \cdot (\varphi w_n) \, dx + R_{\Omega,n}, \]
where
\[R_{\Omega,n} = - \int_{\Omega} \nabla_h u_n : \nabla h \delta_n \, dx + \int_{\Omega} p_n \, \text{div}_h(\delta_n) \, dx + \int_{\Omega} f \cdot \delta_n \, dx, \]
with \(\delta_n = r_h^{(n)}(\varphi w_n) - \varphi w_n\). Thanks to the approximation properties of the operator \(r_h^{(n)}\) (Theorem 3.1), we get
\[\| \delta_n \|_{H^1(\Omega)^d} \leq c_6 h_n \| \varphi w_n \|_{H^2(\Omega)^d} \leq c_7 h_n^{1-\eta}, \]
where \(c_{i}\) and, from now on in this proof, the other real numbers denoted by \(c_{i}\), \(i \in \mathbb{N}\), also depend on \(\varphi\). Thus, since the sequences \((\nabla_h u_n)_{n \in \mathbb{N}}\) and \((p_n)_{n \in \mathbb{N}}\) are bounded in \(L^2(\Omega)^d \times d\) and \(L^2(\Omega)\), respectively, we have
\[(5.8) \quad |R_{\Omega,n}| \leq c_8 h_n^{1-\eta}. \]

Returning now to Equation (5.7) and applying the identity (1.3) over each control volume, we get
\[\int_{\Omega} \text{curl}_h(u_n) \cdot \text{curl}(\varphi w_n) \, dx + \int_{\Omega} \text{div}_h(u_n) \, \text{div}(\varphi w_n) \, dx \]
\[- \int_{\Omega} p_n \, \text{div}(\varphi w_n) \, dx = \int_{\Omega} f \cdot (\varphi w_n) \, dx + R_{\partial T,n}, \]
where the term \(R_{\partial T,n}\) gathering the boundary terms appearing in (1.3) has the following structure:
\[R_{\partial T,n} = \sum_{\sigma \in E_{\text{int}}} \sum_{1 \leq i,j,k \leq d} c_{\sigma,i,j,k} |u_n|_{i} \text{ (} \nabla(\varphi w_n)\text{)}_{j,k} \, d\gamma, \]
and each real number \(c_{\sigma,i,j,k}\) is a component of the unit normal vector to \(\sigma\). Applying Lemma (3.3) we thus get
\[(5.9) \quad |R_{\partial T,n}| \leq c_9 h_n \| u_n \|_{1,b} \| \varphi w_n \|_{H^2(\Omega)} \leq c_{10} h_n^{1-\eta}. \]

The choice of \(w_n\) gives \(\text{div}(\varphi w_n) = i_h q_n \varphi + w_n \cdot \nabla \varphi\) and \(\text{curl}(\varphi w_n) = L(\varphi) w_n\), where \(L(\varphi)\) is a matrix with entries involving some first-order derivatives of \(\varphi\). Thus, we get
\[\int_{\Omega} \text{curl}_h(u_n) \cdot L(\varphi) w_n \, dx + \int_{\Omega} \text{div}_h(u_n) \, (q_n \varphi + w_n \cdot \nabla \varphi) \, dx \]
\[- \int_{\Omega} p_n \, (q_n \varphi + w_n \cdot \nabla \varphi) \, dx = \int_{\Omega} f \cdot (\varphi w_n) \, dx + R_{\Omega,n} + R_{\partial T,n} + R_{i_h,n}, \]
where \(R_{i_h,n} \) reads
\[
R_{i_h,n} = - \int_{\Omega} \left(\text{div}_h(u_n) - p_n \right) (i_h q_n - q_n) \varphi \, dx.
\]

Thanks to the fact that both \(\text{div}_h(u_n) \) and \(p_n \) are bounded in \(L^2(\Omega) \), the third inequality in (5.6) yields
\[
| R_{i_h,n} | \leq c_{i1} h_n^{1-\eta}.
\]

Using the estimates (5.8), (5.9) and (5.10), together with the convergence properties of the sequences \((u_n)_{n \in \mathbb{N}}, (w_n)_{n \in \mathbb{N}}\) and \((p_n)_{n \in \mathbb{N}}\) to pass to the limit when \(n \to \infty \) in the preceding equation, we get
\[
\lim_{n \to \infty} \int_{\Omega} \left(\text{div}_h(u_n) - p_n \right) q_n \varphi \, dx = - \int_{\Omega} \text{curl}(u) \cdot L(\varphi) w \, dx
\]
\[
- \int_{\Omega} \text{div}(u) (w \cdot \nabla \varphi) \, dx + \int_{\Omega} p (w \cdot \nabla \varphi) \, dx + \int_{\Omega} f \cdot (\varphi w) \, dx.
\]

But, from Proposition 5.9, we know that \(u \) and \(p \) satisfy Equation (1.2a). Taking \(v = \varphi w \) in this last relation and using \(\text{curl}(w) = 0 \) and \(\text{div}(w) = 0 \) yields
\[
\int_{\Omega} \left(\text{div}(u) - p \right) q \varphi \, dx = - \int_{\Omega} \text{curl}(u) \cdot L(\varphi) w \, dx
\]
\[
- \int_{\Omega} \text{div}(u) (w \cdot \nabla \varphi) \, dx + \int_{\Omega} p (w \cdot \nabla \varphi) \, dx + \int_{\Omega} f \cdot (\varphi w) \, dx,
\]
which concludes the proof. \(\Box \)

Proposition 5.10. Let \((T^{(n)})_{n \in \mathbb{N}}\) be a sequence of discretizations satisfying the same assumptions as in Proposition 5.3 and let \((u_n, p_n, \rho_n)_{n \in \mathbb{N}}\) be a corresponding sequence of discrete solutions. Let \((u, p, \rho) \in H^1_0(\Omega)^d \times L^2(\Omega) \times L^{2\gamma}(\Omega)\) be the limit (up to the extraction of a subsequence and in the sense of Proposition 5.4) of this sequence of solutions when \(n \to \infty \). Then we have
\[
\lim_{n \to \infty} \int_{\Omega} \left(\text{div}_h(u_n) - p_n \right) \rho_n \, dx = \int_{\Omega} \left(\text{div}(u) - p \right) \rho \, dx.
\]

Proof. By the stability result of Theorem 5.3, the sequence \((\rho_n)_{n \in \mathbb{N}}\) satisfies
\[
\forall n \in \mathbb{N}, \quad \| \rho_n \|_{L^{2\gamma}(\Omega)} + h^{\xi/2} |\rho_n|_T \leq C.
\]

Hence Proposition 5.4 with \(q_n = \rho_n, q = \rho \) and \(\eta = \xi/2 \) applies and thus
\[
\forall \varphi \in C_c^\infty(\Omega), \quad \lim_{n \to \infty} \int_{\Omega} \left(\text{div}_h(u_n) - p_n \right) \rho_n \varphi \, dx = \int_{\Omega} \left(\text{div}(u) - p \right) \rho \varphi \, dx.
\]

As in Step 3 of the proof of Theorem 2.2, since the sequence \((\text{div}_h(u_n) - p_n)_{n \in \mathbb{N}}\) is bounded in \(L^2(\Omega) \) and \((\rho_n)_{n \in \mathbb{N}}\) is bounded in \(L^{2\gamma}(\Omega) \) with \(\gamma > 1 \), the sequence \((\text{div}_h(u_n) - p_n) \rho_n)_{n \in \mathbb{N}}\) is equi-integrable, and thus, Lemma B.2 yields the conclusion. \(\Box \)

This result concludes the analogue at the discrete level of Step 3 in the proof of Theorem 2.2. Let us now state the final convergence result, the proof of which closely follows Step 4.
Theorem 5.11. Let be a sequence of triangulations \((T^{(n)})_{n \in \mathbb{N}}\) of \(\Omega\) be given. We assume that \(h_n\) tends to zero when \(n \to \infty\). In addition, we assume that the sequence of discretizations is regular, in the sense that there exists \(\theta_0 > 0\) such that \(\theta_n \geq \theta_0, \forall n \in \mathbb{N}\). For \(n \in \mathbb{N}\), we denote by \(W_h^{(n)}\) and \(L_h^{(n)}\), respectively, the discrete spaces for the velocity and the pressure associated to \(T^{(n)}\) and by \((u_n, p_n, \rho_n) \in W_h^{(n)} \times L_h^{(n)} \times L_h^{(n)}\) a corresponding solution to the discrete problem \([\text{1.1}]\), with \(\alpha \geq 1\) and \(0 < \xi < 2\). Then, up to the extraction of a subsequence, when \(n \to \infty\):

1. the sequence \((u_n)_{n \in \mathbb{N}}\) (strongly) converges in \(L^2(\Omega)^d\) to a limit \(u \in H_0^1(\Omega)^d\),
2. the sequence \((p_n)_{n \in \mathbb{N}}\) converges weakly in \(L^2(\Omega)\) and (strongly) in \(L^p(\Omega)\), for \(1 \leq p < 2\), to \(p \in L^2(\Omega)\),
3. the sequence \((\rho_n)_{n \in \mathbb{N}}\) converges weakly in \(L^{2\gamma}(\Omega)\) and (strongly) in \(L^p(\Omega)\), for \(1 \leq p < 2\gamma\), to \(\rho \in L^{2\gamma}(\Omega)\),
4. \((u, p, \rho)\) is a solution to Problem \([\text{1.2a}]-[\text{1.2c}]\).

Remark 5.12 (Forcing term involving the density). This convergence result also holds in the case where \(f = \rho g\), replacing for the scheme, Equation \([\text{4.1a}]\) by Equation \([\text{4.3}]\). The only additional difficulty lies in the solution estimates, and the modification of their proof is explained in Remark 2.5.

Proof. Since, by Proposition \([\text{5.5}]\), we know that the weak limit \((u, p, \rho)\) exists and satisfies the weak momentum and mass balance equations \([\text{1.2a}]-[\text{1.2c}]\), together with \(\rho \geq 0\) a.e. in \(\Omega\) and \(\int_\Omega \rho \, dx = M\), we only need here to prove the strong convergence of \((p_n)_{n \in \mathbb{N}}\) and \((\rho_n)_{n \in \mathbb{N}}\), together with the fact that the equation of state is satisfied:

\[p = \rho^\gamma \text{ a.e. in } \Omega. \]

To this purpose, we mimic in this proof Step 4 of Theorem \([\text{2.2}]\),

Thanks to the fact that \(\rho \in L^{2\gamma}(\Omega), \rho \geq 0\) a.e. in \(\Omega\), \(u \in (H_0^1(\Omega))^d\) and that \((\rho, u)\) satisfies \([\text{1.2a}]-[\text{1.2c}]\) (which is the weak form of \(\text{div}(\rho u) = 0\)), we may apply Lemma \([\text{2.1}]\) to obtain

\[\int_\Omega \rho \, \text{div}(u) \, dx = 0. \]

As in the proof of Theorem \([\text{2.2}]\), we now consider the sequence \((G_n)_{n \in \mathbb{N}}\) with \(G_n = (p_n - \rho^\gamma)(\rho_n - \rho)\). For all \(n \in \mathbb{N}\), the function \(G_n\) belongs to \(L^1(\Omega)\) and \(G_n \geq 0\) a.e. in \(\Omega\). Furthermore, expanding the product in \(G_n\), we get

\[\int_\Omega G_n \, dx = \int_\Omega p_n \rho_n \, dx - \int_\Omega p_n \rho \, dx - \int_\Omega \rho^\gamma \rho_n \, dx + \int_\Omega \rho^\gamma \rho \, dx. \]

From Proposition \([\text{5.10}]\) and using \([\text{5.11}]\), we have

\[\lim_{n \to \infty} \int_\Omega (p_n - \text{div}_h(u_n)) \rho_n \, dx - \int_\Omega p \rho \, dx = 0. \]

Lemma \([\text{5.2}]\) yields

\[\limsup_{n \to \infty} \int_\Omega \text{div}_h(u_n) \rho_n \, dx \leq 0. \]

Hence

\[\limsup_{n \to \infty} \int_\Omega p_n \rho_n \, dx \leq \int_\Omega p \rho \, dx. \]
Using the weak convergence in $L^2(\Omega)$ of p_n to p and of ρ_n to ρ, we see that
$$\limsup_{n \to \infty} \int_{\Omega} G_n \, dx \leq 0$$
and, since $G_n \geq 0$ a.e., $G_n \to 0$ in $L^1(\Omega)$. By strictly the same arguments as in the end of the proof of Theorem 2.2 we thus obtain that $p = \rho^\gamma$ a.e. in Ω and then the desired strong convergence of $(p_n)_{n \in \mathbb{N}}$ and $(\rho_n)_{n \in \mathbb{N}}$. □

6. Discussion

This paper extends to the case where the equation of state reads $p = \rho^\gamma$, the convergence results proven in [7] for the linear law $p = \rho$. To our knowledge, these convergence analyses seem to be the first results of this kind for the compressible Stokes problem. Besides the convergence of the scheme, they also provide an existence result for solutions of the continuous problem (which could also be derived from the continuous existence theory ingredients for the steady Navier-Stokes equations, as stated in [11, p. 162]).

A puzzling fact is that the present theory relies on two ingredients which are usually not present in actual implementations. Firstly, the stabilization term $T_{\text{stab},2}$ is used in two of our proofs: first to ensure the convergence of the discretization of the mass convection flux $\text{div}(\rho u)$ and, second, for the proof of the discrete “effective viscous pressure” lemma (Proposition 5.9). To our knowledge, this term has never been introduced elsewhere, and in particular never appears in the schemes implemented in “real-life” computer codes. Secondly, the control of the pressure in some $L^q(\Omega)$ space with $q > 1$ (here in $L^2(\Omega)$) relies on the stability of the discrete gradient (i.e. the satisfaction of the so-called discrete inf-sup condition), which is not verified by collocated discretizations; note that this argument is not needed to obtain some control on the solution (see the proof of a priori estimates here and [6, 5] for stability studies of schemes for the Navier-Stokes equations). Assessing the effective relevance of these requirements for the discretization should deserve more work in the future.

An easy extension of this work consists in replacing the diffusive term $-\Delta u$ in (1.1) by its complete expression $-\mu \Delta u - (\mu/3) \nabla(\text{div} u)$ with $\mu > 0$ (i.e. the usual form of the divergence of the shear stress tensor in a constant viscosity compressible flow). Concerning higher-order approximation issues, let us note that the fact that the pressure is approximated by a piecewise constant function appears crucial in both stability and convergence proofs: extending this study to higher-degree finite element discretizations thus certainly represents a difficult task. Finally, let us mention that an extension of the present work to the MAC scheme is underway.

Appendix A. Proof of Lemma 2.1

Proof: We handle the proof of this lemma in two steps.

Step 1. We assume in this step that there exists some $\alpha > 0$ such that $\rho \geq \alpha$ a.e. in Ω.

Let us first consider the case of a regular function ρ, say $\rho \in C^1(\bar{\Omega})$. In this case, if $1 < \beta \leq \gamma$, we take $\varphi = \rho^{\beta-1}$ in (1.2b), which yields
$$\int_{\Omega} \rho^{\beta-1} u \cdot \nabla \rho \, dx = 0,$$
or, equivalently,
$$\int_{\Omega} u \cdot \nabla \rho^\beta \, dx = 0.$$
and thus (2.1), using the boundary condition on \(u \). Assume now that \(\beta = 1 \). A first way to prove (2.1) in this case is to pass to the limit, as \(n \to \infty \), on (2.1) with \(\beta = 1 + 1/n \) (and \(n \geq n_0, 1/n_0 < \gamma - 1 \)). A second way (which is also valid if \(\gamma = 1 \)) is to take \(\varphi = \ln(\rho) \) in (1.2b). We obtain

\[
0 = \int_{\Omega} u \cdot \nabla \rho \, dx = \int_{\Omega} \rho \text{div}(u) \, dx.
\]

This simple proof, which works for a regular function \(\rho \), is adapted in Section 3 in a discrete setting, the discretization playing a similar role to the regularization.

We now have to prove (2.1) without assuming regularity of \(\rho \). Let \(B \) be an open ball containing \(\bar{\Omega} \). Taking \(u = 0 \) in \(\mathbb{R}^d \setminus \bar{\Omega} \), \(\rho = \alpha \) in \(\mathbb{R}^d \setminus B \) and \(\rho = 0 \) in \(\mathbb{R}^d \setminus B \), we have \(\rho \in L^{2\gamma}(\mathbb{R}^d) \), \(\rho \geq 0 \) a.e. in \(\mathbb{R}^d \), \(\rho \geq \alpha \) a.e. in \(B \) and \(u \in H^1(\mathbb{R}^d) \). We also deduce from (1.2b):

\[
(A.1) \quad \int_{\mathbb{R}^d} \rho u \cdot \nabla \varphi \, dx = 0 \text{ for all } \varphi \in C^1(\mathbb{R}^d).
\]

Let \((r_n)_{n \in \mathbb{N}^*} \) be a sequence of mollifiers, that is

\[
(A.2) \quad r \in C_c^\infty(\mathbb{R}^d, \mathbb{R}), \quad \int_{\mathbb{R}^d} r \, dx = 1, \quad r \geq 0 \text{ in } \mathbb{R}^d
\]

and, for \(n \in \mathbb{N}^* \), \(x \in \mathbb{R}^d \), \(r_n(x) = n^d r(nx) \).

For \(n \in \mathbb{N}^* \), we set \(\rho_n = \rho \ast r_n \) and \((\rho u)_n = (\rho u) \ast r_n\). Thanks to (A.1), we have \(\text{div}((\rho u)_n) = 0 \) in \(\mathbb{R}^d \). Since \(u \in H^1(\mathbb{R}^d) \), and \(\rho \in L^{2\gamma}(\mathbb{R}^d) \), we will prove in Lemma 3.4 that \(\text{div}((\rho u)_n - \rho_n u) \to 0 \) weakly in \(L^{(2\gamma)/((\gamma-1)}(\mathbb{R}^d) \) as \(n \to \infty \). Then, if \((q_n)_{n \in \mathbb{N}^*} \) is a converging sequence in \(L^{(2\gamma)/((\gamma-1)}(\mathbb{R}^d) \), we have

\[
- \int_{\mathbb{R}^d} \text{div}(\rho_n u) q_n \, dx = \int_{\mathbb{R}^d} \text{div}((\rho u)_n - \rho_n u) q_n \, dx \to 0 \text{ as } n \to \infty.
\]

Let \(1 < \beta \leq \gamma \). Taking \(q_n = \rho_n^{\beta-1} \) (which is actually a converging sequence in \(L^{(2\gamma)/((\gamma-1)}(\mathbb{R}^d) \), which converges towards \(\rho^{\beta-1} \)) yields

\[
(A.3) \quad - \int_{\Omega} \text{div}(\rho u) \rho_n^{\beta-1} \, dx = - \int_{\mathbb{R}^d} \text{div}(\rho_n u) \rho_n^{\beta-1} \, dx \to 0 \text{ as } n \to \infty.
\]

The function \(\rho_n^{\beta-1} \) belongs to \(C^1(\Omega) \), at least for \(n \) large enough, since \(\rho \geq \alpha \) in \(B \supset \Omega \). Then, (A.3) reads

\[
\int_{\Omega} \rho_n^{\beta-1} u \cdot \nabla \rho_n \, dx \to 0 \text{ as } n \to \infty,
\]

or, equivalently,

\[
\int_{\Omega} \rho_n^{\beta} \text{div}(u) \, dx = - \int_{\Omega} u \cdot \nabla \rho_n^{\beta} \, dx \to 0 \text{ as } n \to \infty.
\]

As \(n \to \infty \), we have \(\rho_n \to \rho \) in \(L^{2\gamma}(\Omega) \) and therefore \(\rho_n^{\beta} \to \rho^{\beta} \) in \(L^2(\Omega) \). Then

\[
\int_{\Omega} \rho_n^{\beta} \text{div}(u) \, dx \to \int_{\Omega} \rho^{\beta} \text{div}(u) \, dx,
\]

and we obtain (2.1).

As in the case of a regular \(\rho \), it remains to prove (2.1) if \(\beta = 1 \). A simple way to do so is to pass to the limit, as \(n \to \infty \), on (2.1) with \(\beta = 1 + 1/n \) (and \(n \geq n_0, 1/n_0 \leq \gamma - 1 \)).
Step 2, General Case. Let $\alpha > 0$ and set $\rho_n = \rho + \alpha$, so that $\rho_n \geq \alpha$ a.e.. We begin by using, for a fixed $\alpha > 0$, the same proof as in Step 1, except that $\text{div}(\rho_n \mathbf{u})$ is not equal to 0 since $\text{div}(\rho_n \mathbf{u}) = \alpha \text{div}(\mathbf{u})$. Setting, for simplicity, $\bar{\rho} = \rho_n$, we proceed as in Step 1. Taking $\mathbf{u} = 0$ in $\mathbb{R}^d \setminus \Omega$, $\bar{\rho} = \alpha$ in $B \setminus \Omega$ and $\bar{\rho} = 0$ in $\mathbb{R}^d \setminus B$, we have $\bar{\rho} \in L^{2\gamma}(\mathbb{R}^d)$, $\bar{\rho} \geq 0$ a.e. in \mathbb{R}^d, $\bar{\rho} \geq \alpha$ a.e. in B and $\mathbf{u} \in H^1(\mathbb{R}^d)^d$. We also deduce from (A.2):

\begin{equation}
\int_{\mathbb{R}^d} \bar{\rho} \mathbf{u} \cdot \nabla \varphi \, dx = \int_{\mathbb{R}^d} \alpha \mathbf{u} \cdot \nabla \varphi \, dx \quad \text{for all } \varphi \in C^1(\mathbb{R}^d),
\end{equation}

which gives $\text{div}(\bar{\rho} \mathbf{u}) = h$ (in the sense of distributions) with $h = \alpha \text{div}(\mathbf{u})$ (which is a function belonging to $L^2(\mathbb{R}^d)$).

For $n \in \mathbb{N}^*$, we set $\bar{\rho}_n = \bar{\rho} \ast r_n$ and $(\bar{\rho} \mathbf{u})_n = (\bar{\rho} \mathbf{u}) \ast r_n$. Thanks to (A.4), we have $\text{div}((\bar{\rho} \mathbf{u})_n) = h \ast r_n$ in \mathbb{R}^d (note that $h \ast r_n$ tends to h in $L^2(\mathbb{R}^d)$ as $n \to \infty$). Since $\mathbf{u} \in H^1(\mathbb{R}^d)^d$, and $\bar{\rho} \in L^{2\gamma}(\mathbb{R}^d)$, Lemma [A.4] gives that $\text{div}((\bar{\rho} \mathbf{u})_n - \bar{\rho}_n \mathbf{u}) \to 0$ weakly in $L^{2\gamma/(\gamma + 1)}(\mathbb{R}^d)$ as $n \to \infty$. Then, if $(\eta_n)_{n \in \mathbb{N}^*}$ is a converging sequence in $L^{2\gamma/(\gamma + 1)}(\mathbb{R}^d)$ and in $L^2(\mathbb{R}^d)$ to some η, we have

\begin{align*}
- \int_{\mathbb{R}^d} \text{div}(\bar{\rho}_n \mathbf{u}) \eta_n \, dx &= \int_{\mathbb{R}^d} \text{div}((\bar{\rho} \mathbf{u})_n - \bar{\rho}_n \mathbf{u}) \eta_n \, dx - \int_{\mathbb{R}^d} (h \ast r_n) \eta_n \, dx \\
&\quad \to - \int_{\mathbb{R}^d} h \eta \, dx \quad \text{as } n \to \infty.
\end{align*}

Let $1 < \beta \leq \gamma$. Taking $\eta_n = \bar{\rho}_n^{\beta - 1}$, which actually converges in $L^{2\gamma/(\gamma - 1)}(\mathbb{R}^d)$ and in $L^2(\mathbb{R}^d)$ towards $\bar{\rho}^{\beta - 1}$, yields

\begin{equation}
\int_{\Omega} \beta \bar{\rho}_n^{\beta - 1} \mathbf{u} \cdot \nabla \bar{\rho}_n \, dx = \int_{\mathbb{R}^d} \text{div}(\bar{\rho}_n \mathbf{u}) \bar{\rho}_n^{\beta - 1} \, dx \\
\quad \to - \int_{\mathbb{R}^d} h \bar{\rho}^{\beta - 1} \, dx \quad \text{as } n \to \infty.
\end{equation}

The function $\bar{\rho}_n^{\beta - 1}$ belongs to $C^1(\Omega)$, at least for n large enough, since $\bar{\rho} \geq \alpha$ in $B \supset \Omega$. Then, (A.5) reads

\begin{align*}
(\beta - 1) \int_{\Omega} \bar{\rho}_n^{\beta - 1} \mathbf{u} \cdot \nabla \bar{\rho}_n \, dx &= \int_{\mathbb{R}^d} h \bar{\rho}^{\beta - 1} \, dx \quad \text{as } n \to \infty,
\end{align*}

or, equivalently

\begin{equation}
\frac{\beta - 1}{\beta} \int_{\Omega} \bar{\rho}_n^{\beta} \text{div}(\mathbf{u}) \, dx \to - \int_{\mathbb{R}^d} h \bar{\rho}^{\beta - 1} \, dx \quad \text{as } n \to \infty.
\end{equation}

As $n \to \infty$, we have $\bar{\rho}_n \to \bar{\rho}$ in $L^{2\gamma}(\Omega)$ and therefore $\bar{\rho}_n^{\beta} \to \bar{\rho}^{\beta}$ in $L^2(\Omega)$. Then

\begin{align*}
\int_{\Omega} \bar{\rho}_n^{\beta} \text{div}(\mathbf{u}) \, dx &= \int_{\mathbb{R}^d} \bar{\rho}^{\beta} \text{div}(\mathbf{u}) \, dx,
\end{align*}

and we obtain

\begin{equation}
\frac{\beta - 1}{\beta} \int_{\Omega} \bar{\rho}^{\beta} \text{div}(\mathbf{u}) \, dx = - \int_{\mathbb{R}^d} h \bar{\rho}^{\beta - 1} \, dx.
\end{equation}

Replacing $\bar{\rho}$ by $\rho + \alpha$ and h by $\alpha \text{div}(\mathbf{u})$ gives, for all $\alpha > 0$:

\begin{align*}
\frac{\beta - 1}{\beta} \int_{\Omega} (\rho + \alpha)^{\beta} \text{div}(\mathbf{u}) \, dx &= - \int_{\Omega} \alpha \text{div}(\mathbf{u}) (\rho + \alpha)^{\beta - 1} \, dx.
\end{align*}

As $\alpha \to 0$, the $L^2(\Omega)$-convergence of $(\rho + \alpha)^\beta$ and $(\rho + \alpha)^{\beta - 1}$ towards ρ^{β} and $\rho^{\beta - 1}$ leads to (2.1).
Once again, it remains to prove (2.1) if \(\beta = 1 \), which can be done by passing to the limit, as \(n \to \infty \), on (2.1) with \(\beta = 1 + 1/n \) (and \(n \geq n_0, 1/n_0 \leq \gamma - 1 \)). □

APPENDIX B. LEMMATA

Definition B.1. A sequence \((F_n)_{n \in \mathbb{N}} \subset L^1(\Omega) \) is said to be equi-integrable if

\[
\lim_{\lambda_d(A) \to 0} \int_A |F_n| \, dx = 0, \quad \text{uniformly with respect to } n \in \mathbb{N},
\]

where \(\lambda_d(A) \) denotes the \(d \)-dimensional Lebesgue measure of the Borelian subset \(A \subset \Omega \).

Lemma B.2. Let \((F_n)_{n \in \mathbb{N}} \subset L^1(\Omega) \) be an equi-integrable sequence, and let \(F \) be a function of \(L^1(\Omega) \). We assume that

(B.1) \[
\lim_{n \to \infty} \int_\Omega F_n \varphi \, dx = \int_\Omega F \varphi \, dx \text{ for all } \varphi \in C_\infty c(\Omega).
\]

Then

\[
\lim_{n \to \infty} \int_\Omega F_n \, dx = \int_\Omega F \, dx.
\]

Proof. Let \(\epsilon \) be a positive real number. Using the equi-integrability of \((F_n)_{n \in \mathbb{N}} \) and \(F \in L^1(\Omega) \), there exists \(\eta > 0 \) such that, for any Borelian subset \(A \) of \(\Omega \):

(B.2) \[
\lambda_d(A) \leq \eta \Rightarrow \int_A |F_n| \, dx \leq \epsilon, \quad \forall n \in \mathbb{N}, \text{ and } \int_A |F| \, dx \leq \epsilon.
\]

Let \(K \) be a compact subset of \(\Omega \). Then, there exists \(\varphi \in C_\infty c(\Omega) \) such that \(0 \leq \varphi \leq 1 \) in \(\Omega \), \(\varphi = 1 \) in \(K \) and \(\lambda_d(\Omega \setminus K) \leq \eta \) and we obtain, for all \(n \in \mathbb{N} \),

\[
\int_\Omega (F_n - F) \, dx = \int_\Omega (F_n - F)(1 - \varphi) \, dx + \int_\Omega (F_n - F) \varphi \, dx,
\]

which gives, thanks to (B.2) with \(A = \Omega \setminus K \),

\[
|\int_\Omega (F_n - F) \, dx| \leq 2\epsilon + |\int_\Omega (F_n - F) \varphi \, dx|.
\]

Finally, (B.1) gives the existence of \(n_0 \in N \) such that

\[
n \geq n_0 \Rightarrow |\int_\Omega (F_n - F) \, dx| \leq 3\epsilon,
\]

which concludes the proof. □

Remark B.3. Indeed, with the assumptions of Lemma B.2 we may prove that \(F_n \to F \) weakly in \(L^1(\Omega) \), but we do not need this finer result here.

Lemma B.4. Let \(\gamma > 1 \), \(\rho \in L^{2\gamma}(\mathbb{R}^d) \), and \(u \in H^1(\mathbb{R}^d)^d \). Let \((r_n)_{n \in \mathbb{N}^*} \) be a sequence of mollifiers as given by \((A.2) \) and, for \(n \in \mathbb{N}^* \), \(\rho_n = \rho \ast r_n \) and \((\rho u)_n = (\rho u) \ast r_n \). Then, \([(\rho u)_n - \rho_n u] \to 0 \) weakly in \(W^{1,(2\gamma)/(\gamma+1)}(\mathbb{R}^d)^d \) (which gives, in particular, that \(\text{div}((\rho u)_n - \rho_n u) \to 0 \) weakly in \(L^{(2\gamma)/(\gamma+1)}(\mathbb{R}^d) \)).
Proof: First, we remark that \(\rho_n \to \rho \) in \(L^{2\gamma}(\mathbb{R}^d) \) as \(n \to \infty \). Let \(\delta = 2\gamma/(\gamma + 1) \). Since \(u \in L^2(\mathbb{R}^d)^d \), we deduce that \(\rho_n u \to \rho u \) in \(L^\delta(\mathbb{R}^d)^d \) as \(n \to \infty \). Since \(\rho u \in L^\delta(\mathbb{R}^d)^d \), \((\rho u)_n \to \rho u \) in \(L^\delta(\mathbb{R}^d)^d \) as \(n \to \infty \). This gives \([(\rho u)_n - \rho_n u] \to 0 \) in \(L^\delta(\mathbb{R}^d)^d \). Then, in order to prove the lemma, thanks to the reflexivity of \(W^{1,\delta}(\mathbb{R}^d) \), we only have to prove that the sequence \((\rho u_n)_n \) is bounded in \(W^{1,\delta}(\mathbb{R}^d)^d \). Then, we only have to prove that, for any \(i, j \in \{1, \ldots, d\} \) (denoting by \(u_1, \ldots, u_d \) the components of \(u \)), the sequence:

\[
(\partial_i[(\rho u_j)_n - \rho_n u_j])_{n \in \mathbb{N}}
\]

is bounded in \(L^\delta(\mathbb{R}^d) \) (where \(\partial_i \) denotes the derivative with respect to \(x_i \)). Let \(i, j \in \{1, \ldots, d\} \) and \(n \in \mathbb{N}^* \). We have

\[
\partial_i[(\rho u_j)_n - \rho_n u_j] = (\rho u_j)_n \ast \partial_i r_n - (\rho \ast \partial_i r_n) u_j - \rho_n \ast \partial_i u_j = F_n - G_n,
\]

with

\[
F_n = (\rho u_j)_n \ast \partial_i r_n - (\rho \ast \partial_i r_n) u_j \quad \text{and} \quad G_n = \rho_n \ast \partial_i u_j.
\]

The sequence \((G_n)_{n \in \mathbb{N}^*} \) is bounded in \(L^\delta(\mathbb{R}^d) \) since

\[
\|G_n\|_{L^\delta(\mathbb{R}^d)} \leq \|\rho_n\|_{L^{2\gamma}(\mathbb{R}^d)} \|\partial_i u_j\|_{L^2(\mathbb{R}^d)} \leq \|\rho\|_{L^{2\gamma}(\mathbb{R}^d)} \|u\|_{H^1(\mathbb{R}^d)^d}.
\]

We now have to prove that the sequence \((F_n)_{n \in \mathbb{N}^*} \) is bounded in \(L^\delta(\mathbb{R}^d) \). For a.e. \(x \in \mathbb{R}^d \), we have

\[
F_n(x) = \int_{\mathbb{R}^d} \rho(x - y) \left(u_j(x - y) - u_j(x) \right) \partial_i r_n(y) \, dy
\]

\[
= \int_B \rho(x - \frac{z}{n}) \left(u_j(x - \frac{z}{n}) - u_j(x) \right) n \cdot \partial_i r(z) \, dz,
\]

where \(B \) is a ball of center 0 and radius \(R \) containing the support of \(r \). Then, setting \(\delta' = (2\gamma)/(\gamma - 1) \) (so that \(1/\delta + 1/\delta' = 1 \)) and using the Hölder inequality, we get

\[
|F_n(x)|^\delta \leq n^\delta \int_B |\rho(x - \frac{z}{n})| \left(u_j(x - \frac{z}{n}) - u_j(x) \right)^\delta |\partial_i r(z)| \, dz
\]

\[
\times \left[\int_B |\partial_i r(z)| \, dz \right]^{\delta/\delta'}.
\]

We set

\[
C = \left[\int_B |\partial_i r(z)| \, dz \right]^{\delta/\delta'},
\]

we integrate over \(\mathbb{R}^d \) the preceding inequality and we use the Fubini-Tonelli Theorem:

\[
\int_{\mathbb{R}^d} |F_n(x)|^\delta \, dx \leq C n^\delta \int_B \left[\int_{\mathbb{R}^d} |\rho(x - \frac{z}{n})| (u_j(x - \frac{z}{n}) - u_j(x))^\delta \, dx \right] |\partial_i r(z)| \, dz.
\]

Using again the Hölder inequality, we have for \(z \in B \):

\[
\int_{\mathbb{R}^d} |\rho(x - \frac{z}{n})(u_j(x - \frac{z}{n}) - u_j(x))|^\delta \, dx \leq \left[\int_{\mathbb{R}^d} |\rho(x - \frac{z}{n})|^{2\gamma} \, dx \right]^{1/(\gamma + 1)}
\]

\[
\times \left[\int_{\mathbb{R}^d} |u_j(x - \frac{z}{n}) - u_j(x)|^2 \, dx \right]^{\gamma/(\gamma + 1)}.
\]
Since \(\int_{\mathbb{R}^d} |\rho(x - \frac{z}{n})|^2 \, dx = \|\rho\|^2_{L^2} \) and, for all \(z \in B \) (see Lemma B.5):
\[
\int_{\mathbb{R}^d} |u_j(x - \frac{z}{n}) - u_j(x)|^2 \, dx \leq \left(\frac{R}{n} \right)^2 \|u\|^2_{H^1(\mathbb{R}^d)} ,
\]
we obtain
\[
\int_{\mathbb{R}^d} |\rho(x - \frac{z}{n})(u_j(x - \frac{z}{n}) - u_j(x))|^\delta \, dx \leq \left(\frac{R}{n} \right)^\delta \|\rho\|^\delta_{L^\gamma} \|u\|^\delta_{H^1(\mathbb{R}^d)} .
\]
Then, (B.3) yields
\[
\int_{\mathbb{R}^d} |F_n(x)|^\delta \, dx \leq C_\delta \left(\frac{R}{n} \right)^\delta \|\rho\|^\delta_{L^\gamma} \|u\|^\delta_{H^1(\mathbb{R}^d)} C^{\frac{m}{\delta}} .
\]
This proves that the sequence \((F_n)_{n \in \mathbb{N}}\) is bounded in \(L^\delta(\mathbb{R}^d)\) and concludes the proof of the lemma since \(\delta = (2\gamma)/(\gamma + 1)\). \(\square\)

Lemma B.5. Let \(w \in H^1(\mathbb{R}^d) \) and \(h \in \mathbb{R}^d \). Then:
\[
(B.4) \quad \|w(\cdot + h) - w\|_{L^2(\mathbb{R}^d)} \leq |h| \|w\|_{H^1(\mathbb{R}^d)} ,
\]
where \(|h| \) is the Euclidean norm of \(h \).

Proof. Let \(h \in \mathbb{R}^d \) and \(\varphi \in C_c^\infty(\mathbb{R}^d) \). For all \(x \in \mathbb{R}^d \), we have
\[
\varphi(x + h) - \varphi(x) = \int_0^1 \nabla \varphi(x + th) \cdot h \, dt .
\]
Then
\[
|\varphi(x + h) - \varphi(x)|^2 \leq |h|^2 \int_0^1 |\nabla \varphi(x + th)|^2 \, dt .
\]
Integrating the preceding inequality over \(\mathbb{R}^d \) and using the Fubini-Tonelli Theorem gives
\[
\|\varphi(\cdot + h) - \varphi\|^2_{L^2(\mathbb{R}^d)} \leq |h|^2 \|\varphi\|^2_{H^1(\mathbb{R}^d)} ,
\]
which leads to (B.4) with \(w = \varphi \). Finally, the density of \(C_c^\infty(\mathbb{R}^d) \) in \(H^1(\mathbb{R}^d) \) gives (B.4) for all \(w \in H^1(\mathbb{R}^d) \). \(\square\)

Lemma B.6. Let \(\Omega \) be a bounded open set of \(\mathbb{R}^d \), \(q \geq 1 \) and \(a, b, r > 0 \). Then there exists \(C \), only depending on \(\Omega \), \(q \), \(a \), \(b \), \(r \), such that
\[
p \in L^q(\Omega), \quad \int_{\Omega} |p - m(p)|^q \, dx \leq a, \quad \int_{\Omega} |p|^r \, dx \leq b \Rightarrow \int_{\Omega} |p|^q \, dx \leq C ,
\]
where \(m(p) \) denotes the mean value of \(p \).

Proof. The proof is trivial if \(r \geq 1 \) since, in this case, the Hölder inequality gives \(\lambda_d(\Omega)|m(p)| \leq b^{1/r} \lambda_d(\Omega)^{(1-1/r)} \) (where \(\lambda_d(\Omega) \) is the \(d \)-dimensional Lebesgue measure of \(\Omega \)) and we conclude with \(|p|^q \leq 2^r |p - m(p)|^q + 2^r m(p)^q \) a.e. in \(\Omega \).

We assume now that \(r < 1 \). Then \(|m(p)|^r \leq 2^r |p - m(p)|^r + 2^r |p|^r \leq 2^r |p - m(p)|^r + 2^r 2^r |p|^r \) a.e. in \(\Omega \). This yields \(\lambda_d(\Omega)|m(p)|^r \leq 2^r a + 2^r \lambda_d(\Omega) + 2^r b \) and we conclude, once again, using \(|p|^q \leq 2^r |p - m(p)|^q + 2^r m(p)^q \) a.e. in \(\Omega \). \(\square\)

The following lemma is due to Necas, and a simple proof of this result is given in [1].
Let us now suppose that \(v \in L^2(\Omega) \) such that \(\int_{\Omega} v \, dx = 0 \). Then, there exists \(v \in (H^1_0(\Omega))^d \) such that \(\text{div}(v) = q \) a.e. in \(\Omega \) and \(\|v\|_{H^1(\Omega)^d} \leq c_2 \|q\|_{L^2(\Omega)} \), where \(c_2 \) only depends on \(\Omega \).

Lemma B.8. Let \(\Omega \) be a bounded open set of \(\mathbb{R}^d \) and \(\rho \in L^2(\Omega) \). Then, there exists \(v \in H^2(\Omega)^d \) such that \(\text{div}(v) = \rho \) a.e. in \(\Omega \), \(\text{curl}(v) = 0 \) a.e. in \(\Omega \) and \(\|v\|_{H^2(\Omega)^d} \leq C \|\rho\|_{L^2(\Omega)} \), where \(C \) only depends on \(\Omega \).

Furthermore, if the boundary of \(\Omega \) is Lipschitz continuous and \(\rho \in H^1(\Omega) \), it is possible to have \(v \in H^2(\Omega)^d \) and \(\|v\|_{H^2(\Omega)^d} \leq C \|\rho\|_{H^1(\Omega)} \), where \(C \) only depends on \(\Omega \).

Proof. Let \(B \) be a ball containing \(\Omega \), \(\rho \in L^2(\Omega) \). We extend \(\rho \) to \(B \) by zero outside \(\Omega \). Let \(w \) be the solution of the Dirichlet problem on \(B \) associated to \(\rho \). A classical regularity result gives that \(w \in H^2(B) \) and gives an estimate on the \(H^2 \)-norm of \(w \) in terms of the \(L^2 \)-norm of \(\rho \), only depending on the radius of \(B \) (and thus on \(\Omega \)). Taking \(v = -\nabla w \) concludes the proof of the first part of the lemma.

Let us now suppose that \(\rho \in H^1(\Omega) \). We now extend \(\rho \) to \(B \) in such a way that the extension, still denoted by \(\rho \), belongs to \(H^1(B) \) and \(\|\rho\|_{H^1(B)} \leq c \|\rho\|_{H^1(\Omega)} \), with \(c \) only depending on \(\Omega \) (such an extension exists since \(\Omega \) is supposed to have a Lipschitz continuous boundary). We then proceed as previously, taking for \(w \) the solution of the Dirichlet problem on \(B \) associated to \(\rho \), \(v = -\nabla w \), and invoking the regularity of the Laplace operator.

Lemma B.9. Let \(\Omega \) be a bounded open set of \(\mathbb{R}^d \), \(p, q \in [1, \infty] \), \(q < p \) and \((g_n)_{n \in \mathbb{N}} \) a bounded sequence of \(L^p(\Omega) \). Assume that \(g_n \to g \) a.e. in \(\Omega \). Then, \(g \in L^q(\Omega) \) and \(g_n \to g \) in \(L^q(\Omega) \), as \(n \to \infty \).

Proof. The fact that \(g \in L^p(\Omega) \) is an easy consequence of Fatou’s Lemma applied to the sequence \((|g_n|^p)_{n \in \mathbb{N}} \). The fact that \(g_n \to g \) in \(L^q(\Omega) \) as \(n \to \infty \) is an easy consequence of the Egorov Theorem (and uses the a.e. convergence of \(g_n \) to \(g \)) and of the equi-integrability of the sequence \((|g_n|^q)_{n \in \mathbb{N}} \) (which follows from the boundedness in \(L^p(\Omega) \) of \((g_n)_{n \in \mathbb{N}} \)).

References

Université de Marne-la-Vallée, France
E-mail address: eynard@univ-mlv.fr

Université de Provence, France
E-mail address: gallouet@latp.univ-mrs.fr

Université de Provence, France
E-mail address: herbin@latp.univ-mrs.fr

Institut de Radioprotection et de Sûreté Nucléaire (IRSN), France
E-mail address: jean-claude.latche@irsn.fr