Numerical analysis of a finite element scheme for the approximation of harmonic maps into surfaces
HTML articles powered by AMS MathViewer
- by Sören Bartels;
- Math. Comp. 79 (2010), 1263-1301
- DOI: https://doi.org/10.1090/S0025-5718-09-02300-X
- Published electronically: September 16, 2009
- PDF | Request permission
Abstract:
This article studies the numerical approximation of harmonic maps into surfaces, i.e., critical points for the Dirichlet energy among weakly differentiable vector fields that are constrained to attain their pointwise values in a given manifold. An iterative algorithm that is based on a linearization of the constraint about the current iterate at the nodes of a triangulation is devised, and its global convergence to a discrete harmonic map is proved under general conditions. Weak accumulation of discrete harmonic maps at harmonic maps as discretization parameters tend to zero is established in two dimensions under certain assumptions on the underlying sequence of triangulations. Numerical simulations illustrate the performance of the algorithm for curved domains.References
- François Alouges, A new algorithm for computing liquid crystal stable configurations: the harmonic mapping case, SIAM J. Numer. Anal. 34 (1997), no. 5, 1708–1726. MR 1472192, DOI 10.1137/S0036142994264249
- François Alouges, A new finite element scheme for Landau-Lifchitz equations, Discrete Contin. Dyn. Syst. Ser. S 1 (2008), no. 2, 187–196. MR 2379897, DOI 10.3934/dcdss.2008.1.187
- Ball, J. M. Orientable and non-orientable director fields for liquid crystals. In ICIAM 07 – 6th International Congress on Industrial and Applied Mathematics (Zurich, Switzerland, July 2007).
- John W. Barrett, Sören Bartels, Xiaobing Feng, and Andreas Prohl, A convergent and constraint-preserving finite element method for the $p$-harmonic flow into spheres, SIAM J. Numer. Anal. 45 (2007), no. 3, 905–927. MR 2318794, DOI 10.1137/050639429
- John W. Barrett and Robert Nürnberg, Finite element approximation of a Stefan problem with degenerate Joule heating, M2AN Math. Model. Numer. Anal. 38 (2004), no. 4, 633–652. MR 2087727, DOI 10.1051/m2an:2004030
- Sören Bartels, Robust a priori error analysis for the approximation of degree-one Ginzburg-Landau vortices, M2AN Math. Model. Numer. Anal. 39 (2005), no. 5, 863–882. MR 2178565, DOI 10.1051/m2an:2005038
- Sören Bartels, Stability and convergence of finite-element approximation schemes for harmonic maps, SIAM J. Numer. Anal. 43 (2005), no. 1, 220–238. MR 2177142, DOI 10.1137/040606594
- Bartels, S. Finite element approximation of harmonic maps between surfaces. Habilitation thesis, Humboldt-Universität zu Berlin, Germany, 2008.
- Sören Bartels and Andreas Prohl, Constraint preserving implicit finite element discretization of harmonic map flow into spheres, Math. Comp. 76 (2007), no. 260, 1847–1859. MR 2336271, DOI 10.1090/S0025-5718-07-02026-1
- Fabrice Bethuel, On the singular set of stationary harmonic maps, Manuscripta Math. 78 (1993), no. 4, 417–443. MR 1208652, DOI 10.1007/BF02599324
- Haïm Brezis, Jean-Michel Coron, and Elliott H. Lieb, Harmonic maps with defects, Comm. Math. Phys. 107 (1986), no. 4, 649–705. MR 868739
- Demetrios Christodoulou and A. Shadi Tahvildar-Zadeh, On the regularity of spherically symmetric wave maps, Comm. Pure Appl. Math. 46 (1993), no. 7, 1041–1091. MR 1223662, DOI 10.1002/cpa.3160460705
- Philippe G. Ciarlet, The finite element method for elliptic problems, Classics in Applied Mathematics, vol. 40, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 2002. Reprint of the 1978 original [North-Holland, Amsterdam; MR0520174 (58 #25001)]. MR 1930132, DOI 10.1137/1.9780898719208
- Clarenz, U., and Dziuk, G. Numerical methods for conformally parametrized surfaces. In CPDw04 - Interphase 2003: Numerical Methods for Free Boundary Problems (The Isaac Newton Institute for Mathematical Sciences, Cambridge, UK, April 2003).
- Ph. Clément, Approximation by finite element functions using local regularization, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. 9 (1975), no. no. , no. R-2, 77–84 (English, with French summary). MR 400739
- de Gennes, P.-G., and Prost, J. The Physics of Liquid Crystals. Oxford Science Publications, Oxford, 1993. second ed.
- Alan Demlow and Gerhard Dziuk, An adaptive finite element method for the Laplace-Beltrami operator on implicitly defined surfaces, SIAM J. Numer. Anal. 45 (2007), no. 1, 421–442. MR 2285862, DOI 10.1137/050642873
- DeSimone, A., Kohn, R. V., Müller, S., and Otto, F. Recent analytical developments in micromagnetics. in: Science of Hysteresis, Elsevier, G. Bertotti and I Magyergyoz, Eds. (2005).
- Gerhard Dziuk, Finite elements for the Beltrami operator on arbitrary surfaces, Partial differential equations and calculus of variations, Lecture Notes in Math., vol. 1357, Springer, Berlin, 1988, pp. 142–155. MR 976234, DOI 10.1007/BFb0082865
- J. Eells and L. Lemaire, On the construction of harmonic and holomorphic maps between surfaces, Math. Ann. 252 (1980), no. 1, 27–52. MR 590546, DOI 10.1007/BF01420211
- Lawrence C. Evans, Partial regularity for stationary harmonic maps into spheres, Arch. Rational Mech. Anal. 116 (1991), no. 2, 101–113. MR 1143435, DOI 10.1007/BF00375587
- Frank, F. C. On the theory of liquid crystals. Discuss. Faraday Soc. 25 (1958), 19–28.
- Alexandre Freire, Stefan Müller, and Michael Struwe, Weak compactness of wave maps and harmonic maps, Ann. Inst. H. Poincaré C Anal. Non Linéaire 15 (1998), no. 6, 725–754 (English, with English and French summaries). MR 1650966, DOI 10.1016/S0294-1449(99)80003-1
- Robert M. Hardt, Singularities of harmonic maps, Bull. Amer. Math. Soc. (N.S.) 34 (1997), no. 1, 15–34. MR 1397098, DOI 10.1090/S0273-0979-97-00692-7
- Frédéric Hélein, Régularité des applications faiblement harmoniques entre une surface et une variété riemannienne, C. R. Acad. Sci. Paris Sér. I Math. 312 (1991), no. 8, 591–596 (French, with English summary). MR 1101039
- Frédéric Hélein, Harmonic maps, conservation laws and moving frames, 2nd ed., Cambridge Tracts in Mathematics, vol. 150, Cambridge University Press, Cambridge, 2002. Translated from the 1996 French original; With a foreword by James Eells. MR 1913803, DOI 10.1017/CBO9780511543036
- Willi Jäger and Helmut Kaul, Rotationally symmetric harmonic maps from a ball into a sphere and the regularity problem for weak solutions of elliptic systems, J. Reine Angew. Math. 343 (1983), 146–161. MR 705882
- Jürgen Jost, On the existence of harmonic maps from a surface into the real projective plane, Compositio Math. 59 (1986), no. 1, 15–19. MR 850117
- Landau, L. D. and Lifschitz, E. M. On the theory of the dispersion of magnetic permeability in ferromagnetic bodies. Phys. Z. Sovietunion 8 (1935), 153–169.
- Fang-Hua Lin, A remark on the map $x/|x|$, C. R. Acad. Sci. Paris Sér. I Math. 305 (1987), no. 12, 529–531 (English, with French summary). MR 916327
- San Yih Lin and Mitchell Luskin, Relaxation methods for liquid crystal problems, SIAM J. Numer. Anal. 26 (1989), no. 6, 1310–1324. MR 1025090, DOI 10.1137/0726076
- P.-L. Lions, The concentration-compactness principle in the calculus of variations. The limit case. I, Rev. Mat. Iberoamericana 1 (1985), no. 1, 145–201. MR 834360, DOI 10.4171/RMI/6
- Charles B. Morrey Jr., Multiple integrals in the calculus of variations, Die Grundlehren der mathematischen Wissenschaften, Band 130, Springer-Verlag New York, Inc., New York, 1966. MR 202511
- Stefan Müller, Michael Struwe, and Vladimir Šverák, Harmonic maps on planar lattices, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 25 (1997), no. 3-4, 713–730 (1998). Dedicated to Ennio De Giorgi. MR 1655538
- Oseen, C. W. The theory of liquid crystals. Trans. Faraday Soc. 29 (1933), 883–899.
- Tristan Rivière, Everywhere discontinuous harmonic maps into spheres, Acta Math. 175 (1995), no. 2, 197–226. MR 1368247, DOI 10.1007/BF02393305
- Tristan Rivière, Conservation laws for conformally invariant variational problems, Invent. Math. 168 (2007), no. 1, 1–22. MR 2285745, DOI 10.1007/s00222-006-0023-0
- Walter Rudin, Real and complex analysis, 3rd ed., McGraw-Hill Book Co., New York, 1987. MR 924157
- Richard Schoen and Karen Uhlenbeck, A regularity theory for harmonic maps, J. Differential Geometry 17 (1982), no. 2, 307–335. MR 664498
- Michael Struwe, Variational methods, 3rd ed., Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics [Results in Mathematics and Related Areas. 3rd Series. A Series of Modern Surveys in Mathematics], vol. 34, Springer-Verlag, Berlin, 2000. Applications to nonlinear partial differential equations and Hamiltonian systems. MR 1736116, DOI 10.1007/978-3-662-04194-9
- Luminita A. Vese and Stanley J. Osher, Numerical methods for $p$-harmonic flows and applications to image processing, SIAM J. Numer. Anal. 40 (2002), no. 6, 2085–2104 (2003). MR 1974176, DOI 10.1137/S0036142901396715
- Epifanio G. Virga, Variational theories for liquid crystals, Applied Mathematics and Mathematical Computation, vol. 8, Chapman & Hall, London, 1994. MR 1369095, DOI 10.1007/978-1-4899-2867-2
Bibliographic Information
- Sören Bartels
- Affiliation: Institute for Numerical Simulation, Rheinische Friedrich-Wilhelms-Universität Bonn, Wegelerstrasse 6, 53115 Bonn, Germany
- Email: bartels@ins.uni-bonn.de
- Received by editor(s): December 1, 2008
- Received by editor(s) in revised form: May 8, 2009
- Published electronically: September 16, 2009
- © Copyright 2009 American Mathematical Society
- Journal: Math. Comp. 79 (2010), 1263-1301
- MSC (2000): Primary 65N12, 65N22, 58E20
- DOI: https://doi.org/10.1090/S0025-5718-09-02300-X
- MathSciNet review: 2629993