Optimal error estimates in Jacobi-weighted Sobolev spaces for polynomial approximations on the triangle
HTML articles powered by AMS MathViewer
- by Huiyuan Li and Jie Shen;
- Math. Comp. 79 (2010), 1621-1646
- DOI: https://doi.org/10.1090/S0025-5718-09-02308-4
- Published electronically: September 17, 2009
- PDF | Request permission
Abstract:
Spectral approximations on the triangle by orthogonal polynomials are studied in this paper. Optimal error estimates in weighted semi-norms for both the $L^2-$ and $H^1_0-$orthogonal polynomial projections are established by using the generalized Koornwinder polynomials and the properties of the Sturm-Liouville operator on the triangle. These results are then applied to derive error estimates for the spectral-Galerkin method for second- and fourth-order equations on the triangle. The generalized Koornwinder polynomials and approximation results developed in this paper will be useful for many other applications involving spectral and spectral-element approximations in triangular domains.References
- Milton Abramowitz and Irene A. Stegun (eds.), Handbook of mathematical functions with formulas, graphs, and mathematical tables, Dover Publications, Inc., New York, 1992. Reprint of the 1972 edition. MR 1225604
- P. Appell. Sur des polynômes de deux variables analogues aux polynômes de Jacobi. Arch. Math. Phys., 66:238–245, 1881.
- P. Appell and J. Kampeé de Fériet. Fonctions Hypergéométriques et Hypersphériques: Polyno͡mes d’Hermite. Gauthier-Villars, Paris, 1926.
- I. Babuška and Manil Suri, The optimal convergence rate of the $p$-version of the finite element method, SIAM J. Numer. Anal. 24 (1987), no. 4, 750–776. MR 899702, DOI 10.1137/0724049
- Dietrich Braess and Christoph Schwab, Approximation on simplices with respect to weighted Sobolev norms, J. Approx. Theory 103 (2000), no. 2, 329–337. MR 1749969, DOI 10.1006/jath.1999.3429
- C. Canuto, M. Y. Hussaini, A. Quarteroni, and T. A. Zang, Spectral methods, Scientific Computation, Springer-Verlag, Berlin, 2006. Fundamentals in single domains. MR 2223552
- Moshe Dubiner, Spectral methods on triangles and other domains, J. Sci. Comput. 6 (1991), no. 4, 345–390. MR 1154903, DOI 10.1007/BF01060030
- Charles F. Dunkl and Yuan Xu, Orthogonal polynomials of several variables, Encyclopedia of Mathematics and its Applications, vol. 81, Cambridge University Press, Cambridge, 2001. MR 1827871, DOI 10.1017/CBO9780511565717
- Daniele Funaro, Polynomial approximation of differential equations, Lecture Notes in Physics. New Series m: Monographs, vol. 8, Springer-Verlag, Berlin, 1992. MR 1176949
- Axel Grundmann and H. M. Möller, Invariant integration formulas for the $n$-simplex by combinatorial methods, SIAM J. Numer. Anal. 15 (1978), no. 2, 282–290. MR 488881, DOI 10.1137/0715019
- Ben-Yu Guo, Jie Shen, and Li-Lian Wang, Optimal spectral-Galerkin methods using generalized Jacobi polynomials, J. Sci. Comput. 27 (2006), no. 1-3, 305–322. MR 2285783, DOI 10.1007/s10915-005-9055-7
- Ben-Yu Guo, Jie Shen, and Li-Lian Wang. Generalized Jacobi polynomials/functions and applications to spectral methods. Appl. Numer. Math., 59(5):1011–1028, 2009.
- Ben-yu Guo and Li-Lian Wang, Error analysis of spectral method on a triangle, Adv. Comput. Math. 26 (2007), no. 4, 473–496. MR 2291668, DOI 10.1007/s10444-005-7471-8
- Wilhelm Heinrichs, Spectral collocation on triangular elements, J. Comput. Phys. 145 (1998), no. 2, 743–757. MR 1645013, DOI 10.1006/jcph.1998.6052
- J. S. Hesthaven and D. Gottlieb, Stable spectral methods for conservation laws on triangles with unstructured grids, Comput. Methods Appl. Mech. Engrg. 175 (1999), no. 3-4, 361–381. MR 1702193, DOI 10.1016/S0045-7825(98)00361-2
- George Em Karniadakis and Spencer J. Sherwin, Spectral/$hp$ element methods for computational fluid dynamics, 2nd ed., Numerical Mathematics and Scientific Computation, Oxford University Press, New York, 2005. MR 2165335, DOI 10.1093/acprof:oso/9780198528692.001.0001
- Tom Koornwinder, Two-variable analogues of the classical orthogonal polynomials, Theory and application of special functions (Proc. Advanced Sem., Math. Res. Center, Univ. Wisconsin, Madison, Wis., 1975) Academic Press, New York-London, 1975, pp. 435–495. MR 402146
- Heping Ma and Weiwei Sun, A Legendre-Petrov-Galerkin and Chebyshev collocation method for third-order differential equations, SIAM J. Numer. Anal. 38 (2000), no. 5, 1425–1438. MR 1812518, DOI 10.1137/S0036142999361505
- Steven A. Orszag, Spectral methods for problems in complex geometries, J. Comput. Phys. 37 (1980), no. 1, 70–92. MR 584322, DOI 10.1016/0021-9991(80)90005-4
- R. G. Owens, Spectral approximations on the triangle, R. Soc. Lond. Proc. Ser. A Math. Phys. Eng. Sci. 454 (1998), no. 1971, 857–872. MR 1631583, DOI 10.1098/rspa.1998.0189
- Ch. Schwab, $p$- and $hp$-finite element methods, Numerical Mathematics and Scientific Computation, The Clarendon Press, Oxford University Press, New York, 1998. Theory and applications in solid and fluid mechanics. MR 1695813
- Jie Shen, Li-Lian Wang, and Huiyuan Li. A triangular spectral element method using fully tensorial rational basis functions. SIAM J. Numer. Anal., 47(3):1619–1650, 2009.
- Spencer J. Sherwin and George Em. Karniadakis, A new triangular and tetrahedral basis for high-order $(hp)$ finite element methods, Internat. J. Numer. Methods Engrg. 38 (1995), no. 22, 3775–3802. MR 1362003, DOI 10.1002/nme.1620382204
- S. J. Sherwin and G. E. Karniadakis, A triangular spectral element method; applications to the incompressible Navier-Stokes equations, Comput. Methods Appl. Mech. Engrg. 123 (1995), no. 1-4, 189–229. MR 1339373, DOI 10.1016/0045-7825(94)00745-9
- A. H. Stroud, Integration formulas and orthogonal polynomials for two variables, SIAM J. Numer. Anal. 6 (1969), 222–229. MR 261788, DOI 10.1137/0706020
Bibliographic Information
- Huiyuan Li
- Affiliation: Institute of Software, Chinese Academy of Sciences, Beijing 100190, People’s Republic of China
- MR Author ID: 708582
- Jie Shen
- Affiliation: Department of Mathematics, Purdue University, West Lafayette, Indiana, 47907
- MR Author ID: 257933
- ORCID: 0000-0002-4885-5732
- Received by editor(s): August 12, 2008
- Received by editor(s) in revised form: June 1, 2009
- Published electronically: September 17, 2009
- Additional Notes: The first author was partially supported by the NSFC grants 10601056, 10431050 and 60573023.
The second author was partially supported by the NFS grant DMS-0610646 and AFOSR FA9550-08-1-0416. - © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 79 (2010), 1621-1646
- MSC (2000): Primary 65N35, 65N22, 65F05, 35J05
- DOI: https://doi.org/10.1090/S0025-5718-09-02308-4
- MathSciNet review: 2630005