Some completely monotonic functions of positive order
HTML articles powered by AMS MathViewer
- by Stamatis Koumandos and Martin Lamprecht;
- Math. Comp. 79 (2010), 1697-1707
- DOI: https://doi.org/10.1090/S0025-5718-09-02313-8
- Published electronically: November 9, 2009
- PDF | Request permission
Abstract:
We completely determine the set of $(\alpha ,\beta )\in \mathbb {R}^2$ for which the function $\frac {e^{\alpha x} - e^{\beta x}}{e^x -1}$ is convex on $(0,\infty )$ and use this result to give some special classes of completely monotonic functions of positive order related to gamma and psi functions.References
- M. J. Dubourdieu, Sur un théorème de M. S. Bernstein relatif à la transformation de Laplace-Stieltjes, Compositio Math. 7 (1939), 96–111 (French). MR 436
- H. van Haeringen, Completely monotonic and related functions, J. Math. Anal. Appl. 204 (1996), no. 2, 389–408. MR 1421454, DOI 10.1006/jmaa.1996.0443
- KETpic for Maple. Available online at www.kisarazu.ac.jp/˜masa/math/.
- Stamatis Koumandos, Monotonicity of some functions involving the gamma and psi functions, Math. Comp. 77 (2008), no. 264, 2261–2275. MR 2429884, DOI 10.1090/S0025-5718-08-02140-6
- S. Koumandos and M. Lamprecht, On a conjecture for trigonometric sums and starlike functions II, submitted.
- S. Koumandos and H. L. Pedersen, Completely monotonic functions of positive order and asymptotic expansions of the logarithm of Barnes double gamma function and Euler’s gamma function, J. Math. Anal. Appl. 355(1) (2009) 33-40.
- Stamatis Koumandos and Stephan Ruscheweyh, Positive Gegenbauer polynomial sums and applications to starlike functions, Constr. Approx. 23 (2006), no. 2, 197–210. MR 2186305, DOI 10.1007/s00365-004-0584-3
- Stamatis Koumandos and Stephan Ruscheweyh, On a conjecture for trigonometric sums and starlike functions, J. Approx. Theory 149 (2007), no. 1, 42–58. MR 2371613, DOI 10.1016/j.jat.2007.04.006
- F. Qi, Bounds for the ratio of two gamma function, arXiv:0902.2514v1 [math.CA].
- S. Y. Trimble, Jim Wells, and F. T. Wright, Superadditive functions and a statistical application, SIAM J. Math. Anal. 20 (1989), no. 5, 1255–1259. MR 1009357, DOI 10.1137/0520082
- David Vernon Widder, The Laplace Transform, Princeton Mathematical Series, vol. 6, Princeton University Press, Princeton, NJ, 1941. MR 5923
Bibliographic Information
- Stamatis Koumandos
- Affiliation: Department of Mathematics and Statistics, The University of Cyprus, P. O. Box 20537, 1678 Nicosia, Cyprus
- Email: skoumand@ucy.ac.cy
- Martin Lamprecht
- Affiliation: Department of Mathematics and Statistics, The University of Cyprus, P. O. Box 20537, 1678 Nicosia, Cyprus
- Email: martin@ucy.ac.cy
- Received by editor(s): May 7, 2009
- Received by editor(s) in revised form: June 16, 2009
- Published electronically: November 9, 2009
- Additional Notes: The research for this paper has been supported by the Leventis Foundation (Grant no. 3411-21041).
The authors would like to thank Setsuo Takato for his help with KETpic. - © Copyright 2009
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 79 (2010), 1697-1707
- MSC (2010): Primary 33B15; Secondary 26D20, 26D15
- DOI: https://doi.org/10.1090/S0025-5718-09-02313-8
- MathSciNet review: 2630008