A direct coupling of local discontinuous Galerkin and boundary element methods
HTML articles powered by AMS MathViewer
- by Gabriel N. Gatica, Norbert Heuer and Francisco–Javier Sayas;
- Math. Comp. 79 (2010), 1369-1394
- DOI: https://doi.org/10.1090/S0025-5718-10-02309-4
- Published electronically: January 8, 2010
- PDF | Request permission
Abstract:
The coupling of local discontinuous Galerkin (LDG) and boundary element methods (BEM), which has been developed recently to solve linear and nonlinear exterior transmission problems, employs a mortar-type auxiliary unknown to deal with the weak continuity of the traces at the interface boundary. As a consequence, the main features of LDG and BEM are maintained and hence the coupled approach benefits from the advantages of both methods. In this paper we propose and analyze a simplified procedure that avoids the mortar variable by employing LDG subspaces whose functions are continuous on the coupling boundary. The continuity can be implemented either directly or indirectly via the use of Lagrangian multipliers. In this way, the normal derivative becomes the only boundary unknown, and hence the total number of unknown functions is reduced by two. We prove the stability of the new discrete scheme and derive an a priori error estimate in the energy norm. A numerical example confirming the theoretical result is provided. The analysis is also extended to the case of nonlinear problems and to the coupling with other discontinuous Galerkin methods.References
- Douglas N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (1982), no. 4, 742–760. MR 664882, DOI 10.1137/0719052
- Douglas N. Arnold, Franco Brezzi, Bernardo Cockburn, and L. Donatella Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2001/02), no. 5, 1749–1779. MR 1885715, DOI 10.1137/S0036142901384162
- I. Babuška and Manil Suri, The $h$-$p$ version of the finite element method with quasi-uniform meshes, RAIRO Modél. Math. Anal. Numér. 21 (1987), no. 2, 199–238 (English, with French summary). MR 896241, DOI 10.1051/m2an/1987210201991
- I. Babuška and Manil Suri, The optimal convergence rate of the $p$-version of the finite element method, SIAM J. Numer. Anal. 24 (1987), no. 4, 750–776. MR 899702, DOI 10.1137/0724049
- Ivo Babuška and Miloš Zlámal, Nonconforming elements in the finite element method with penalty, SIAM J. Numer. Anal. 10 (1973), 863–875. MR 345432, DOI 10.1137/0710071
- Alexei Bespalov and Norbert Heuer, The $hp$-version of the boundary element method with quasi-uniform meshes in three dimensions, M2AN Math. Model. Numer. Anal. 42 (2008), no. 5, 821–849. MR 2454624, DOI 10.1051/m2an:2008025
- Rommel Bustinza and Gabriel N. Gatica, A local discontinuous Galerkin method for nonlinear diffusion problems with mixed boundary conditions, SIAM J. Sci. Comput. 26 (2004), no. 1, 152–177. MR 2114338, DOI 10.1137/S1064827502419415
- Rommel Bustinza and Gabriel N. Gatica, A mixed local discontinuous Galerkin method for a class of nonlinear problems in fluid mechanics, J. Comput. Phys. 207 (2005), no. 2, 427–456. MR 2144625, DOI 10.1016/j.jcp.2005.01.017
- Rommel Bustinza, Gabriel N. Gatica, and Francisco-Javier Sayas, On the coupling of local discontinuous Galerkin and boundary element methods for non-linear exterior transmission problems, IMA J. Numer. Anal. 28 (2008), no. 2, 225–244. MR 2401197, DOI 10.1093/imanum/drm019
- Rommel Bustinza, Gabriel N. Gatica, and Francisco-Javier Sayas, A LDG-BEM coupling for a class of nonlinear exterior transmission problems, Numerical mathematics and advanced applications, Springer, Berlin, 2006, pp. 1129–1136. MR 2303745, DOI 10.1007/978-3-540-34288-5_{1}13
- Rommel A. Bustinza, Gabriel N. Gatica, and Francisco-Javier Sayas, A look at how LDG and BEM can be coupled, ESAIM Proceedings. Vol. 21 (2007) [Journées d’Analyse Fonctionnelle et Numérique en l’honneur de Michel Crouzeix], ESAIM Proc., vol. 21, EDP Sci., Les Ulis, 2007, pp. 88–97. MR 2404055, DOI 10.1051/proc:072107
- Bernardo Cockburn and Clint Dawson, Some extensions of the local discontinuous Galerkin method for convection-diffusion equations in multidimensions, The mathematics of finite elements and applications, X, MAFELAP 1999 (Uxbridge), Elsevier, Oxford, 2000, pp. 225–238. MR 1801979, DOI 10.1016/B978-008043568-8/50014-6
- M. Costabel, Symmetric methods for the coupling of finite elements and boundary elements (invited contribution), Boundary elements IX, Vol. 1 (Stuttgart, 1987) Comput. Mech., Southampton, 1987, pp. 411–420. MR 965328, DOI 10.1007/978-3-662-21908-9_{2}6
- Martin Costabel, Boundary integral operators on Lipschitz domains: elementary results, SIAM J. Math. Anal. 19 (1988), no. 3, 613–626. MR 937473, DOI 10.1137/0519043
- Jim Douglas Jr. and Todd Dupont, Interior penalty procedures for elliptic and parabolic Galerkin methods, Computing methods in applied sciences (Second Internat. Sympos., Versailles, 1975) Lecture Notes in Phys., Vol. 58, Springer, Berlin-New York, 1976, pp. 207–216. MR 440955
- M. Feistauer, Mathematical and numerical study of nonlinear problems in fluid mechanics, Equadiff 6 (Brno, 1985) Lecture Notes in Math., vol. 1192, Springer, Berlin, 1986, pp. 3–16. MR 877102, DOI 10.1007/BFb0076047
- Miloslav Feistauer, On the finite element approximation of a cascade flow problem, Numer. Math. 50 (1987), no. 6, 655–684. MR 884294, DOI 10.1007/BF01398378
- Gabriel N. Gatica and Francisco-Javier Sayas, An a priori error analysis for the coupling of local discontinuous Galerkin and boundary element methods, Math. Comp. 75 (2006), no. 256, 1675–1696. MR 2240630, DOI 10.1090/S0025-5718-06-01864-3
- P. Grisvard, Singularities in boundary value problems, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], vol. 22, Masson, Paris; Springer-Verlag, Berlin, 1992. MR 1173209
- Hou De Han, A new class of variational formulations for the coupling of finite and boundary element methods, J. Comput. Math. 8 (1990), no. 3, 223–232. MR 1299224
- Bodo Heise, Nonlinear field calculations with multigrid-Newton methods, Impact Comput. Sci. Engrg. 5 (1993), no. 2, 75–110. MR 1223880, DOI 10.1006/icse.1993.1004
- Bodo Heise, Analysis of a fully discrete finite element method for a nonlinear magnetic field problem, SIAM J. Numer. Anal. 31 (1994), no. 3, 745–759. MR 1275111, DOI 10.1137/0731040
- Paul Houston, Janice Robson, and Endre Süli, Discontinuous Galerkin finite element approximation of quasilinear elliptic boundary value problems. I. The scalar case, IMA J. Numer. Anal. 25 (2005), no. 4, 726–749. MR 2170521, DOI 10.1093/imanum/dri014
- George C. Hsiao and Wolfgang L. Wendland, Boundary integral equations, Applied Mathematical Sciences, vol. 164, Springer-Verlag, Berlin, 2008. MR 2441884, DOI 10.1007/978-3-540-68545-6
- J.-C. Nédélec, Integral equations with nonintegrable kernels, Integral Equations Operator Theory 5 (1982), no. 4, 562–572. MR 665149, DOI 10.1007/BF01694054
- Béatrice Rivière, Mary F. Wheeler, and Vivette Girault, Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. I, Comput. Geosci. 3 (1999), no. 3-4, 337–360 (2000). MR 1750076, DOI 10.1023/A:1011591328604
Bibliographic Information
- Gabriel N. Gatica
- Affiliation: CI$^2$MA and Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile
- Email: ggatica@ing-mat.udec.cl
- Norbert Heuer
- Affiliation: Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Casilla 306, Correo 22, Santiago, Chile,
- MR Author ID: 314970
- Email: nheuer@mat.puc.cl
- Francisco–Javier Sayas
- Affiliation: Departamento de Matemática Aplicada, Centro Politécnico Superior, Universidad de Zaragoza, María de Luna, 3 - 50018 Zaragoza, Spain
- Address at time of publication: School of Mathematics, University of Minnesota, 206 Church St. SE, Minneapolis, Minnesota 55455 USA
- Email: jsayas@unizar.es
- Received by editor(s): November 1, 2007
- Received by editor(s) in revised form: April 29, 2009
- Published electronically: January 8, 2010
- Additional Notes: This research was partially supported by FONDAP and BASAL projects CMM, Universidad de Chile, by Centro de Investigación en Ingeniería Matemática (CI$^2$MA), Universidad de Concepción, by FONDECYT project no. 1080044, by Spanish FEDER/MCYT Project MTM2007-63204, and by Gobierno de Aragón (Grupo Consolidado PDIE)
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 79 (2010), 1369-1394
- MSC (2000): Primary 65N30, 65N38, 65N12, 65N15
- DOI: https://doi.org/10.1090/S0025-5718-10-02309-4
- MathSciNet review: 2629997