A direct coupling of local discontinuous Galerkin and boundary element methods
Authors:
Gabriel N. Gatica, Norbert Heuer and Francisco-Javier Sayas
Journal:
Math. Comp. 79 (2010), 1369-1394
MSC (2000):
Primary 65N30, 65N38, 65N12, 65N15
DOI:
https://doi.org/10.1090/S0025-5718-10-02309-4
Published electronically:
January 8, 2010
MathSciNet review:
2629997
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: The coupling of local discontinuous Galerkin (LDG) and boundary element methods (BEM), which has been developed recently to solve linear and nonlinear exterior transmission problems, employs a mortar-type auxiliary unknown to deal with the weak continuity of the traces at the interface boundary. As a consequence, the main features of LDG and BEM are maintained and hence the coupled approach benefits from the advantages of both methods. In this paper we propose and analyze a simplified procedure that avoids the mortar variable by employing LDG subspaces whose functions are continuous on the coupling boundary. The continuity can be implemented either directly or indirectly via the use of Lagrangian multipliers. In this way, the normal derivative becomes the only boundary unknown, and hence the total number of unknown functions is reduced by two. We prove the stability of the new discrete scheme and derive an a priori error estimate in the energy norm. A numerical example confirming the theoretical result is provided. The analysis is also extended to the case of nonlinear problems and to the coupling with other discontinuous Galerkin methods.
- 1. Douglas N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (1982), no. 4, 742–760. MR 664882, https://doi.org/10.1137/0719052
- 2. Douglas N. Arnold, Franco Brezzi, Bernardo Cockburn, and L. Donatella Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2001/02), no. 5, 1749–1779. MR 1885715, https://doi.org/10.1137/S0036142901384162
- 3. I. Babuška and Manil Suri, The ℎ-𝑝 version of the finite element method with quasi-uniform meshes, RAIRO Modél. Math. Anal. Numér. 21 (1987), no. 2, 199–238 (English, with French summary). MR 896241, https://doi.org/10.1051/m2an/1987210201991
- 4. I. Babuška and Manil Suri, The optimal convergence rate of the 𝑝-version of the finite element method, SIAM J. Numer. Anal. 24 (1987), no. 4, 750–776. MR 899702, https://doi.org/10.1137/0724049
- 5. Ivo Babuška and Miloš Zlámal, Nonconforming elements in the finite element method with penalty, SIAM J. Numer. Anal. 10 (1973), 863–875. MR 345432, https://doi.org/10.1137/0710071
- 6. Alexei Bespalov and Norbert Heuer, The ℎ𝑝-version of the boundary element method with quasi-uniform meshes in three dimensions, M2AN Math. Model. Numer. Anal. 42 (2008), no. 5, 821–849. MR 2454624, https://doi.org/10.1051/m2an:2008025
- 7. Rommel Bustinza and Gabriel N. Gatica, A local discontinuous Galerkin method for nonlinear diffusion problems with mixed boundary conditions, SIAM J. Sci. Comput. 26 (2004), no. 1, 152–177. MR 2114338, https://doi.org/10.1137/S1064827502419415
- 8. Rommel Bustinza and Gabriel N. Gatica, A mixed local discontinuous Galerkin method for a class of nonlinear problems in fluid mechanics, J. Comput. Phys. 207 (2005), no. 2, 427–456. MR 2144625, https://doi.org/10.1016/j.jcp.2005.01.017
- 9. Rommel Bustinza, Gabriel N. Gatica, and Francisco-Javier Sayas, On the coupling of local discontinuous Galerkin and boundary element methods for non-linear exterior transmission problems, IMA J. Numer. Anal. 28 (2008), no. 2, 225–244. MR 2401197, https://doi.org/10.1093/imanum/drm019
- 10. Rommel Bustinza, Gabriel N. Gatica, and Francisco-Javier Sayas, A LDG-BEM coupling for a class of nonlinear exterior transmission problems, Numerical mathematics and advanced applications, Springer, Berlin, 2006, pp. 1129–1136. MR 2303745, https://doi.org/10.1007/978-3-540-34288-5_113
- 11. Rommel A. Bustinza, Gabriel N. Gatica, and Francisco-Javier Sayas, A look at how LDG and BEM can be coupled, ESAIM Proceedings. Vol. 21 (2007) [Journées d’Analyse Fonctionnelle et Numérique en l’honneur de Michel Crouzeix], ESAIM Proc., vol. 21, EDP Sci., Les Ulis, 2007, pp. 88–97. MR 2404055, https://doi.org/10.1051/proc:072107
- 12. Bernardo Cockburn and Clint Dawson, Some extensions of the local discontinuous Galerkin method for convection-diffusion equations in multidimensions, The mathematics of finite elements and applications, X, MAFELAP 1999 (Uxbridge), Elsevier, Oxford, 2000, pp. 225–238. MR 1801979, https://doi.org/10.1016/B978-008043568-8/50014-6
- 13. M. Costabel, Symmetric methods for the coupling of finite elements and boundary elements (invited contribution), Boundary elements IX, Vol. 1 (Stuttgart, 1987) Comput. Mech., Southampton, 1987, pp. 411–420. MR 965328, https://doi.org/10.1007/978-3-662-21908-9_26
- 14. Martin Costabel, Boundary integral operators on Lipschitz domains: elementary results, SIAM J. Math. Anal. 19 (1988), no. 3, 613–626. MR 937473, https://doi.org/10.1137/0519043
- 15. Jim Douglas Jr. and Todd Dupont, Interior penalty procedures for elliptic and parabolic Galerkin methods, Computing methods in applied sciences (Second Internat. Sympos., Versailles, 1975) Springer, Berlin, 1976, pp. 207–216. Lecture Notes in Phys., Vol. 58. MR 0440955
- 16. M. Feistauer, Mathematical and numerical study of nonlinear problems in fluid mechanics, Equadiff 6 (Brno, 1985) Lecture Notes in Math., vol. 1192, Springer, Berlin, 1986, pp. 3–16. MR 877102, https://doi.org/10.1007/BFb0076047
- 17. Miloslav Feistauer, On the finite element approximation of a cascade flow problem, Numer. Math. 50 (1987), no. 6, 655–684. MR 884294, https://doi.org/10.1007/BF01398378
- 18. Gabriel N. Gatica and Francisco-Javier Sayas, An a priori error analysis for the coupling of local discontinuous Galerkin and boundary element methods, Math. Comp. 75 (2006), no. 256, 1675–1696. MR 2240630, https://doi.org/10.1090/S0025-5718-06-01864-3
- 19. P. Grisvard, Singularities in boundary value problems, Recherches en Mathématiques Appliquées [Research in Applied Mathematics], vol. 22, Masson, Paris; Springer-Verlag, Berlin, 1992. MR 1173209
- 20. Hou De Han, A new class of variational formulations for the coupling of finite and boundary element methods, J. Comput. Math. 8 (1990), no. 3, 223–232. MR 1299224
- 21. Bodo Heise, Nonlinear field calculations with multigrid-Newton methods, Impact Comput. Sci. Engrg. 5 (1993), no. 2, 75–110. MR 1223880, https://doi.org/10.1006/icse.1993.1004
- 22. Bodo Heise, Analysis of a fully discrete finite element method for a nonlinear magnetic field problem, SIAM J. Numer. Anal. 31 (1994), no. 3, 745–759. MR 1275111, https://doi.org/10.1137/0731040
- 23. Paul Houston, Janice Robson, and Endre Süli, Discontinuous Galerkin finite element approximation of quasilinear elliptic boundary value problems. I. The scalar case, IMA J. Numer. Anal. 25 (2005), no. 4, 726–749. MR 2170521, https://doi.org/10.1093/imanum/dri014
- 24. George C. Hsiao and Wolfgang L. Wendland, Boundary integral equations, Applied Mathematical Sciences, vol. 164, Springer-Verlag, Berlin, 2008. MR 2441884
- 25. J.-C. Nédélec, Integral equations with nonintegrable kernels, Integral Equations Operator Theory 5 (1982), no. 4, 562–572. MR 665149, https://doi.org/10.1007/BF01694054
- 26. Béatrice Rivière, Mary F. Wheeler, and Vivette Girault, Improved energy estimates for interior penalty, constrained and discontinuous Galerkin methods for elliptic problems. I, Comput. Geosci. 3 (1999), no. 3-4, 337–360 (2000). MR 1750076, https://doi.org/10.1023/A:1011591328604
Retrieve articles in Mathematics of Computation with MSC (2000): 65N30, 65N38, 65N12, 65N15
Retrieve articles in all journals with MSC (2000): 65N30, 65N38, 65N12, 65N15
Additional Information
Gabriel N. Gatica
Affiliation:
CI$^{2}$MA and Departamento de Ingeniería Matemática, Universidad de Concepción, Casilla 160-C, Concepción, Chile
Email:
ggatica@ing-mat.udec.cl
Norbert Heuer
Affiliation:
Facultad de Matemáticas, Pontificia Universidad Católica de Chile, Casilla 306, Correo 22, Santiago, Chile,
Email:
nheuer@mat.puc.cl
Francisco-Javier Sayas
Affiliation:
Departamento de Matemática Aplicada, Centro Politécnico Superior, Universidad de Zaragoza, María de Luna, 3 - 50018 Zaragoza, Spain
Address at time of publication:
School of Mathematics, University of Minnesota, 206 Church St. SE, Minneapolis, Minnesota 55455 USA
Email:
jsayas@unizar.es
DOI:
https://doi.org/10.1090/S0025-5718-10-02309-4
Keywords:
Boundary elements,
local discontinuous Galerkin method,
coupling,
error estimates.
Received by editor(s):
November 1, 2007
Received by editor(s) in revised form:
April 29, 2009
Published electronically:
January 8, 2010
Additional Notes:
This research was partially supported by FONDAP and BASAL projects CMM, Universidad de Chile, by Centro de Investigación en Ingeniería Matemática (CI$^{2}$MA), Universidad de Concepción, by FONDECYT project no. 1080044, by Spanish FEDER/MCYT Project MTM2007-63204, and by Gobierno de Aragón (Grupo Consolidado PDIE)
Article copyright:
© Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.