A projection-based error analysis of HDG methods
HTML articles powered by AMS MathViewer
- by Bernardo Cockburn, Jayadeep Gopalakrishnan and Francisco-Javier Sayas;
- Math. Comp. 79 (2010), 1351-1367
- DOI: https://doi.org/10.1090/S0025-5718-10-02334-3
- Published electronically: March 18, 2010
- HTML | PDF | Request permission
Abstract:
We introduce a new technique for the error analysis of hybridizable discontinuous Galerkin (HDG) methods. The technique relies on the use of a new projection whose design is inspired by the form of the numerical traces of the methods. This renders the analysis of the projections of the discretization errors simple and concise. By showing that these projections of the errors are bounded in terms of the distance between the solution and its projection, our studies of influence of the stabilization parameter are reduced to local analyses of approximation by the projection. We illustrate the technique on a specific HDG method applied to a model second-order elliptic problem.References
- D. N. Arnold and F. Brezzi, Mixed and nonconforming finite element methods: implementation, postprocessing and error estimates, RAIRO Modél. Math. Anal. Numér. 19 (1985), no. 1, 7–32 (English, with French summary). MR 813687, DOI 10.1051/m2an/1985190100071
- Douglas N. Arnold, Franco Brezzi, Bernardo Cockburn, and L. Donatella Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2001/02), no. 5, 1749–1779. MR 1885715, DOI 10.1137/S0036142901384162
- Jean-Pierre Aubin, Behavior of the error of the approximate solutions of boundary value problems for linear elliptic operators by Gelerkin’s and finite difference methods, Ann. Scuola Norm. Sup. Pisa Cl. Sci. (3) 21 (1967), 599–637. MR 233068
- Peter Bastian and Béatrice Rivière, Superconvergence and $H(\textrm {div})$ projection for discontinuous Galerkin methods, Internat. J. Numer. Methods Fluids 42 (2003), no. 10, 1043–1057. MR 1991232, DOI 10.1002/fld.562
- Franco Brezzi, Jim Douglas Jr., and L. D. Marini, Two families of mixed finite elements for second order elliptic problems, Numer. Math. 47 (1985), no. 2, 217–235. MR 799685, DOI 10.1007/BF01389710
- Fatih Celiker and Bernardo Cockburn, Superconvergence of the numerical traces of discontinuous Galerkin and hybridized methods for convection-diffusion problems in one space dimension, Math. Comp. 76 (2007), no. 257, 67–96. MR 2261012, DOI 10.1090/S0025-5718-06-01895-3
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 520174
- Bernardo Cockburn and Bo Dong, An analysis of the minimal dissipation local discontinuous Galerkin method for convection-diffusion problems, J. Sci. Comput. 32 (2007), no. 2, 233–262. MR 2320571, DOI 10.1007/s10915-007-9130-3
- Bernardo Cockburn, Bo Dong, and Johnny Guzmán, A superconvergent LDG-hybridizable Galerkin method for second-order elliptic problems, Math. Comp. 77 (2008), no. 264, 1887–1916. MR 2429868, DOI 10.1090/S0025-5718-08-02123-6
- Bernardo Cockburn and Jayadeep Gopalakrishnan, Error analysis of variable degree mixed methods for elliptic problems via hybridization, Math. Comp. 74 (2005), no. 252, 1653–1677. MR 2164091, DOI 10.1090/S0025-5718-05-01741-2
- Bernardo Cockburn, Jayadeep Gopalakrishnan, and Raytcho Lazarov, Unified hybridization of discontinuous Galerkin, mixed, and continuous Galerkin methods for second order elliptic problems, SIAM J. Numer. Anal. 47 (2009), no. 2, 1319–1365. MR 2485455, DOI 10.1137/070706616
- Bernardo Cockburn, Johnny Guzmán, and Haiying Wang, Superconvergent discontinuous Galerkin methods for second-order elliptic problems, Math. Comp. 78 (2009), no. 265, 1–24. MR 2448694, DOI 10.1090/S0025-5718-08-02146-7
- Bernardo Cockburn, Guido Kanschat, Ilaria Perugia, and Dominik Schötzau, Superconvergence of the local discontinuous Galerkin method for elliptic problems on Cartesian grids, SIAM J. Numer. Anal. 39 (2001), no. 1, 264–285. MR 1860725, DOI 10.1137/S0036142900371544
- Bernardo Cockburn, Guido Kanschat, and Dominik Schotzau, A locally conservative LDG method for the incompressible Navier-Stokes equations, Math. Comp. 74 (2005), no. 251, 1067–1095. MR 2136994, DOI 10.1090/S0025-5718-04-01718-1
- Lucia Gastaldi and Ricardo H. Nochetto, Sharp maximum norm error estimates for general mixed finite element approximations to second order elliptic equations, RAIRO Modél. Math. Anal. Numér. 23 (1989), no. 1, 103–128 (English, with French summary). MR 1015921, DOI 10.1051/m2an/1989230101031
- P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 775683
- J. Nitsche, Ein Kriterium für die Quasi-Optimalität des Ritzschen Verfahrens, Numer. Math. 11 (1968), 346–348 (German). MR 233502, DOI 10.1007/BF02166687
- P.-A. Raviart and J. M. Thomas, A mixed finite element method for 2nd order elliptic problems, Mathematical aspects of finite element methods (Proc. Conf., Consiglio Naz. delle Ricerche (C.N.R.), Rome, 1975) Lecture Notes in Math., Vol. 606, Springer, Berlin-New York, 1977, pp. 292–315. MR 483555
- Rolf Stenberg, A family of mixed finite elements for the elasticity problem, Numer. Math. 53 (1988), no. 5, 513–538. MR 954768, DOI 10.1007/BF01397550
- Rolf Stenberg, Postprocessing schemes for some mixed finite elements, RAIRO Modél. Math. Anal. Numér. 25 (1991), no. 1, 151–167 (English, with French summary). MR 1086845, DOI 10.1051/m2an/1991250101511
Bibliographic Information
- Bernardo Cockburn
- Affiliation: School of Mathematics, University of Minnesota, Vincent Hall, Minneapolis, Minnesota 55455
- Email: cockburn@math.umn.edu
- Jayadeep Gopalakrishnan
- Affiliation: Department of Mathematics, University of Florida, Gainesville, Florida 32611–8105
- MR Author ID: 661361
- Email: jayg@math.ufl.edu
- Francisco-Javier Sayas
- Affiliation: Departamento de Matemática Aplicada, CPS, Universidad de Zaragoza, 50018 Zaragoza, Spain
- MR Author ID: 621885
- Email: sayas002@umn.edu
- Received by editor(s): December 22, 2008
- Received by editor(s) in revised form: April 9, 2009
- Published electronically: March 18, 2010
- Additional Notes: The first author was supported in part by the National Science Foundation (Grant DMS-0712955) and by the University of Minnesota Supercomputing Institute
The second author was supported in part by the National Science Foundation under grants DMS-0713833 and SCREMS-0619080.
The third author was partially supported by MEC/FEDER Project MTM2007–63204, Gobierno de Aragón (Grupo PDIE) and was a Visiting Professor of the School of Mathematics, University of Minnesota, during the development of this work. - © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 79 (2010), 1351-1367
- MSC (2010): Primary 65M60, 65N30, 35L65
- DOI: https://doi.org/10.1090/S0025-5718-10-02334-3
- MathSciNet review: 2629996