Portrait of the four regular super-exponentials to base sqrt(2)
HTML articles powered by AMS MathViewer
- by Dmitrii Kouznetsov and Henryk Trappmann;
- Math. Comp. 79 (2010), 1727-1756
- DOI: https://doi.org/10.1090/S0025-5718-10-02342-2
- Published electronically: February 12, 2010
- PDF | Request permission
Abstract:
We introduce the concept of regular super-functions at a fixed point. It is derived from the concept of regular iteration. A super-function F of h is a solution of F(z+1)=h(F(z)). We provide a condition for F being entire, we also give two uniqueness criteria for regular super-functions.
In the particular case h(x)=b$\hat {\phantom {x}}$x we call F super-exponential. h has two real fixed points for b between 1 and e$\hat {\phantom {x}}$(1/e). Exemplary we choose the base b=sqrt(2) and portray the four classes of real regular super-exponentials in the complex plane. There are two at fixed point 2 and two at fixed point 4. Each class is given by the translations along the x-axis of a suitable representative.
Both super-exponentials at fixed point 4—one strictly increasing and one strictly decreasing—are entire. Both super-exponentials at fixed point 2—one strictly increasing and one strictly decreasing—are holomorphic on a right half-plane. All four super-exponentials are periodic along the imaginary axis. Only the strictly increasing super-exponential at 2 can satisfy F(0)=1 and can hence be called tetrational.
We develop numerical algorithms for the precise evaluation of these functions and their inverses in the complex plane. We graph the two corresponding different half-iterates of h(z)=sqrt(2)$\hat {\phantom {x}}$z. An apparent symmetry of the tetrational to base sqrt(2) disproved.
References
- N. H. Abel. Correlative of the functional equation. Crelle’s Journal, 2 (1827) 389.
- M. Abramovich, I. Stegun. Table of special functions. National Bureau of Standards, New York, 1970.
- G. Belitskii and Yu. Lyubich, The real-analytic solutions of the Abel functional equation, Studia Math. 134 (1999), no. 2, 135–141. MR 1688221, DOI 10.4064/sm-134-2-135-141
- G. Belitskii and V. Nicolaevsky, Linear functional-differential equations on the line, Proceedings of the Second World Congress of Nonlinear Analysts, Part 5 (Athens, 1996), 1997, pp. 2585–2593. MR 1602884, DOI 10.1016/S0362-546X(97)00464-1
- G. Belitskii and V. Tkachenko, One-dimensional functional equations, Operator Theory: Advances and Applications, vol. 144, Birkhäuser Verlag, Basel, 2003. MR 1994638, DOI 10.1007/978-3-0348-8079-4
- Nick Bromer, Superexponentiation, Math. Mag. 60 (1987), no. 3, 169–174. MR 1572659
- Carl C. Cowen, Iteration and the solution of functional equations for functions analytic in the unit disk, Trans. Amer. Math. Soc. 265 (1981), no. 1, 69–95. MR 607108, DOI 10.1090/S0002-9947-1981-0607108-9
- Dean Hickerson, Richard Schroeppel, Daniel Asimov. Are these two numbers equal? http://groups.google.com/group/sci.math/browse_thread/thread/1f2a6339171c26ab/ 2b92e8cb9b2b421d, 1991.
- Hellmuth Kneser, Reelle analytische Lösungen der Gleichung $\varphi (\varphi (x))=e^x$ und verwandter Funktional-gleichungen, J. Reine Angew. Math. 187 (1949), 56–67 (German). MR 35385
- R. Arthur Knoebel, Exponentials reiterated, Amer. Math. Monthly 88 (1981), no. 4, 235–252. MR 610484, DOI 10.2307/2320546
- Dmitrii Kouznetsov, Solution of $F(z+1)=\exp (F(z))$ in complex $z$-plane, Math. Comp. 78 (2009), no. 267, 1647–1670. MR 2501068, DOI 10.1090/S0025-5718-09-02188-7
- D. Kouznetsov. Portrait of the analytic extension of the 4th Ackermann function in the com- plex plane. Preprint ILS UEC, 2008.\smaller[1] http://www.ils.uec.ac.jp/~dima/PAPERS/2008ackermann. pdf; http://en.citizendium.org/wiki/Image:Analytic4thAckermannFunction00.jpg
- D. Kouznetsov, H. Trappmann. Superfunctions and sqrt of factorial. Preprint ILS UEC, 2009. http://www.ils.uec.ac.jp/~dima/PAPERS/2009supefae.pdf; Moscow University Physics Bulletin, 2010, in press.
- Marek Kuczma, Bogdan Choczewski, and Roman Ger, Iterative functional equations, Encyclopedia of Mathematics and its Applications, vol. 32, Cambridge University Press, Cambridge, 1990. MR 1067720, DOI 10.1017/CBO9781139086639
- G. Szekeres, Regular iteration of real and complex functions, Acta Math. 100 (1958), 203–258. MR 107016, DOI 10.1007/BF02559539
- Peter Walker, Infinitely differentiable generalized logarithmic and exponential functions, Math. Comp. 57 (1991), no. 196, 723–733. MR 1094963, DOI 10.1090/S0025-5718-1991-1094963-4
- http://math.eretrandre.org/tetrationforum/index.php
- http://en.citizendium.org/wiki/Superfunction
- http://en.citizendium.org/wiki/Tetration
Bibliographic Information
- Dmitrii Kouznetsov
- Affiliation: Institute for Laser Science, University of Electro-Communications 1-5-1 Chofugaoka, Chofushi, Tokyo, 182-8585, Japan
- Email: dima@ils.uec.ac.jp
- Henryk Trappmann
- Affiliation: Henryk Trappmann, Kameruner Str. 9, 13351 Berlin, Germany
- Email: henryk@pool.math.tu-berlin.de
- Received by editor(s): June 1, 2009
- Received by editor(s) in revised form: August 9, 2009
- Published electronically: February 12, 2010
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 79 (2010), 1727-1756
- MSC (2000): Primary 30A99; Secondary 33F99
- DOI: https://doi.org/10.1090/S0025-5718-10-02342-2
- MathSciNet review: 2630010