Optimization algorithm for reconstructing interface changes of a conductivity inclusion from modal measurements
HTML articles powered by AMS MathViewer
- by Habib Ammari, Elena Beretta, Elisa Francini, Hyeonbae Kang and Mikyoung Lim;
- Math. Comp. 79 (2010), 1757-1777
- DOI: https://doi.org/10.1090/S0025-5718-10-02344-6
- Published electronically: January 15, 2010
- PDF | Request permission
Abstract:
In this paper, we propose an original and promising optimization approach for reconstructing interface changes of a conductivity inclusion from measurements of eigenvalues and eigenfunctions associated with the transmission problem for the Laplacian. Based on a rigorous asymptotic analysis, we derive an asymptotic formula for the perturbations in the modal measurements that are due to small changes in the interface of the inclusion. Using fine gradient estimates, we carefully estimate the error term in this asymptotic formula. We then provide a key dual identity which naturally yields to the formulation of the proposed optimization problem. The viability of our reconstruction approach is documented by a variety of numerical results. The resolution limit of our algorithm is also highlighted.References
- H. Ammari, E. Beretta, E. Francini, H. Kang, and M. Lim, Reconstruction of small interface changes of an inclusion from modal measurements II: The elastic case, J. Math. Pures Appl., to appear.
- H. Ammari, E. Bonnetier, Y. Capdeboscq, M. Tanter, and M. Fink, Electrical impedance tomography by elastic deformation, SIAM J. Appl. Math. 68 (2008), no. 6, 1557–1573. MR 2424952, DOI 10.1137/070686408
- H. Ammari, P. Garapon, F. Jouve, and H. Kang, A new optimal control approach toward reconstruction of extended inclusions, preprint.
- Habib Ammari, Hyeonbae Kang, Eunjoo Kim, and Hyundae Lee, Vibration testing for anomaly detection, Math. Methods Appl. Sci. 32 (2009), no. 7, 863–874. MR 2507936, DOI 10.1002/mma.1070
- Habib Ammari, Hyeonbae Kang, and Hyundae Lee, Layer potential techniques in spectral analysis, Mathematical Surveys and Monographs, vol. 153, American Mathematical Society, Providence, RI, 2009. MR 2488135, DOI 10.1090/surv/153
- H. Ammari, H. Kang, M. Lim, and H. Zribi, Layer potential techniques in spectral analysis. Part I: Complete asymptotic expansions for eigenvalues of the Laplacian in domains with small inclusions, Trans. Amer. Math. Soc., to appear.
- H. Ammari, H. Kang, M. Lim, and H. Zribi, Conductivity interface problems. Part I: small perturbations of an interface, Trans. Amer. Math. Soc., to appear.
- H. Ammari and S. Moskow, Asymptotic expansions for eigenvalues in the presence of small inhomogeneities, Math. Methods Appl. Sci. 26 (2003), no. 1, 67–75. MR 1943110, DOI 10.1002/mma.343
- Yves Capdeboscq and Michael S. Vogelius, A general representation formula for boundary voltage perturbations caused by internal conductivity inhomogeneities of low volume fraction, M2AN Math. Model. Numer. Anal. 37 (2003), no. 1, 159–173. MR 1972656, DOI 10.1051/m2an:2003014
- P. R. Garabedian and M. Schiffer, Convexity of domain functionals, J. Analyse Math. 2 (1953), 281–368. MR 60117, DOI 10.1007/BF02825640
- David Gilbarg and Neil S. Trudinger, Elliptic partial differential equations of second order, 2nd ed., Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences], vol. 224, Springer-Verlag, Berlin, 1983. MR 737190, DOI 10.1007/978-3-642-61798-0
- J. Hadamard, Mémoire sur le problème d’analyse relatif à l’équilibre des plaques élastiques encastrées, OEuvres de Jacques Hadamard, 515–631, Vol. 2, Ed. CNRS, Paris, 1968.
- Tosio Kato, Perturbation theory for linear operators, 2nd ed., Grundlehren der Mathematischen Wissenschaften, Band 132, Springer-Verlag, Berlin-New York, 1976. MR 407617
- Vladimir Kozlov, On the Hadamard formula for nonsmooth domains, J. Differential Equations 230 (2006), no. 2, 532–555. MR 2269932, DOI 10.1016/j.jde.2006.08.004
- Yan Yan Li and Michael Vogelius, Gradient estimates for solutions to divergence form elliptic equations with discontinuous coefficients, Arch. Ration. Mech. Anal. 153 (2000), no. 2, 91–151. MR 1770682, DOI 10.1007/s002050000082
- Yanyan Li and Louis Nirenberg, Estimates for elliptic systems from composite material, Comm. Pure Appl. Math. 56 (2003), no. 7, 892–925. Dedicated to the memory of Jürgen K. Moser. MR 1990481, DOI 10.1002/cpa.10079
- John E. Osborn, Spectral approximation for compact operators, Math. Comput. 29 (1975), 712–725. MR 383117, DOI 10.1090/S0025-5718-1975-0383117-3
- Stanley J. Osher and Fadil Santosa, Level set methods for optimization problems involving geometry and constraints. I. Frequencies of a two-density inhomogeneous drum, J. Comput. Phys. 171 (2001), no. 1, 272–288. MR 1843648, DOI 10.1006/jcph.2001.6789
- O.S. Salawu, Detection of structural damage through changes in frequency: a review, Engineering Structures, 19 (1997), 718–723.
- J. Sanchez Hubert and E. Sánchez-Palencia, Vibration and coupling of continuous systems, Springer-Verlag, Berlin, 1989. Asymptotic methods. MR 996423, DOI 10.1007/978-3-642-73782-4
- Barry Simon, A canonical decomposition for quadratic forms with applications to monotone convergence theorems, J. Functional Analysis 28 (1978), no. 3, 377–385. MR 500266, DOI 10.1016/0022-1236(78)90094-0
- Peter Stollmann, A convergence theorem for Dirichlet forms with applications to boundary value problems with varying domains, Math. Z. 219 (1995), no. 2, 275–287. MR 1337221, DOI 10.1007/BF02572365
- Joachim Weidmann, Stetige Abhängigkeit der Eigenwerte und Eigenfunktionen elliptischer Differentialoperatoren vom Gebiet, Math. Scand. 54 (1984), no. 1, 51–69 (German). MR 753063, DOI 10.7146/math.scand.a-12040
Bibliographic Information
- Habib Ammari
- Affiliation: Centre de Mathématiques Appliquées, CNRS UMR 7641 and Ecole Polytechnique, 91128 Palaiseau Cedex, France
- MR Author ID: 353050
- Email: ammari@cmapx.polytechnique.fr
- Elena Beretta
- Affiliation: Dipartimento di Matematica “G. Castelnuovo” Università di Roma “La Sapienza”, Piazzale Aldo Moro 5, 00185 Roma, Italy
- Email: beretta@mat.uniroma1.it
- Elisa Francini
- Affiliation: Dipartimento di Matematica, Università degli Studi di Firenze “Ulisse Dini”, Viale Morgagni 67/A, 50134 Firenze, Italy
- Email: francini@math.unifi.it
- Hyeonbae Kang
- Affiliation: Department of Mathematics, Inha University, Incheon 402-751, Korea
- MR Author ID: 268781
- Email: hbkang@inha.ac.kr
- Mikyoung Lim
- Affiliation: Department of Mathematical Sciences, Korean Advanced Institute of Science and Technology, 335 Gwahangno (373-1 Guseong-dong), Yuseong-gu, Daejeon 305-701, Korea
- MR Author ID: 689036
- Email: mklim@kaist.ac.kr
- Received by editor(s): June 5, 2008
- Received by editor(s) in revised form: March 25, 2009, and August 9, 2009
- Published electronically: January 15, 2010
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 79 (2010), 1757-1777
- MSC (2000): Primary 35R30, 35B34
- DOI: https://doi.org/10.1090/S0025-5718-10-02344-6
- MathSciNet review: 2630011