Sharply local pointwise a posteriori error estimates for parabolic problems
HTML articles powered by AMS MathViewer
- by Alan Demlow and Charalambos Makridakis;
- Math. Comp. 79 (2010), 1233-1262
- DOI: https://doi.org/10.1090/S0025-5718-10-02346-X
- Published electronically: March 1, 2010
- PDF | Request permission
Abstract:
We prove pointwise a posteriori error estimates for semi- and fully-discrete finite element methods for approximating the solution $u$ to a parabolic model problem. Our estimates may be used to bound the finite element error $\|u-u_h\|_{L_\infty (D)}$, where $D$ is an arbitrary subset of the space-time domain of the definition of the given PDE. In contrast to standard global error estimates, these estimators de-emphasize spatial error contributions from space-time regions removed from $D$. Our results are valid on arbitrary shape-regular simplicial meshes which may change in time, and also provide insight into the contribution of mesh change to local errors. When implemented in an adaptive method, these estimates require only enough spatial mesh refinement away from $D$ in order to ensure that local solution quality is not polluted by global effects.References
- Christine Bernardi, Optimal finite-element interpolation on curved domains, SIAM J. Numer. Anal. 26 (1989), no. 5, 1212–1240 (English, with French summary). MR 1014883, DOI 10.1137/0726068
- Mats Boman, On a posteriori error analysis in the maximum norm, Ph.D. thesis, Chalmers University of Technology and Göteborg University, 2000.
- Roland Becker and Rolf Rannacher, An optimal control approach to a posteriori error estimation in finite element methods, Acta Numer. 10 (2001), 1–102. MR 2009692, DOI 10.1017/S0962492901000010
- Ph. Clément, Approximation by finite element functions using local regularization, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge Anal. Numér. 9 (1975), no. no. , no. R-2, 77–84 (English, with French summary). MR 400739
- Alan Demlow, Piecewise linear finite element methods are not localized, Math. Comp. 73 (2004), no. 247, 1195–1201. MR 2047084, DOI 10.1090/S0025-5718-03-01584-9
- Alan Demlow, Localized pointwise a posteriori error estimates for gradients of piecewise linear finite element approximations to second-order quadilinear elliptic problems, SIAM J. Numer. Anal. 44 (2006), no. 2, 494–514. MR 2218957, DOI 10.1137/040610064
- Alan Demlow, Local a posteriori estimates for pointwise gradient errors in finite element methods for elliptic problems, Math. Comp. 76 (2007), no. 257, 19–42. MR 2261010, DOI 10.1090/S0025-5718-06-01879-5
- Alan Demlow, Finite element interpolation of nonsmooth functions on curved domains using polynomial basis functions, Tech. report, In preparation.
- Alan Demlow, Omar Lakkis, and Charalambos Makridakis, A posteriori error estimates in the maximum norm for parabolic problems, SIAM J. Numer. Anal. 47 (2009), no. 3, 2157–2176.
- W. Dörfler and M. Rumpf, An adaptive strategy for elliptic problems including a posteriori controlled boundary approximation, Math. Comp. 67 (1998), no. 224, 1361–1382. MR 1489969, DOI 10.1090/S0025-5718-98-00993-4
- Todd Dupont, Mesh modification for evolution equations, Math. Comp. 39 (1982), no. 159, 85–107. MR 658215, DOI 10.1090/S0025-5718-1982-0658215-0
- S. D. Èĭdel′man and S. D. Ivasišen, Investigation of the Green’s matrix of a homogeneous parabolic boundary value problem, Trudy Moskov. Mat. Obšč. 23 (1970), 179–234 (Russian). MR 367455
- Michael B. Giles and Endre Süli, Adjoint methods for PDEs: a posteriori error analysis and postprocessing by duality, Acta Numer. 11 (2002), 145–236. MR 2009374, DOI 10.1017/S096249290200003X
- M. Lenoir, Optimal isoparametric finite elements and error estimates for domains involving curved boundaries, SIAM J. Numer. Anal. 23 (1986), no. 3, 562–580. MR 842644, DOI 10.1137/0723036
- Dmitriy Leykekhman, Pointwise localized error estimates for parabolic finite element equations, Numer. Math. 96 (2004), no. 3, 583–600. MR 2028727, DOI 10.1007/s00211-003-0480-y
- —, Pointwise weighted error estimates for parabolic finite element equations, Ph.D. thesis, Cornell University, 2004.
- Omar Lakkis and Charalambos Makridakis, Elliptic reconstruction and a posteriori error estimates for fully discrete linear parabolic problems, Math. Comp. 75 (2006), no. 256, 1627–1658. MR 2240628, DOI 10.1090/S0025-5718-06-01858-8
- Xiaohai Liao and Ricardo H. Nochetto, Local a posteriori error estimates and adaptive control of pollution effects, Numer. Methods Partial Differential Equations 19 (2003), no. 4, 421–442. MR 1980188, DOI 10.1002/num.10053
- D. Leykekhman and L. B. Wahlbin, A posteriori error estimates by recovered gradients in parabolic finite element equations, BIT 48 (2008), no. 3, 585–605. MR 2447987, DOI 10.1007/s10543-008-0169-9
- Charalambos Makridakis and Ricardo H. Nochetto, Elliptic reconstruction and a posteriori error estimates for parabolic problems, SIAM J. Numer. Anal. 41 (2003), no. 4, 1585–1594. MR 2034895, DOI 10.1137/S0036142902406314
- L. Kantorovitch, The method of successive approximations for functional equations, Acta Math. 71 (1939), 63–97. MR 95, DOI 10.1007/BF02547750
- M. S. Robertson, The variation of the sign of $V$ for an analytic function $U+iV$, Duke Math. J. 5 (1939), 512–519. MR 51
- Nelson Dunford, A mean ergodic theorem, Duke Math. J. 5 (1939), 635–646. MR 98
- L.R. Scott, Finite element techniques for curved boundaries, Ph.D. thesis, Massachusetts Institute of Technology, Cambridge, MA, 1973.
- Alfred Schmidt and Kunibert G. Siebert, Design of adaptive finite element software, Lecture Notes in Computational Science and Engineering, vol. 42, Springer-Verlag, Berlin, 2005. The finite element toolbox ALBERTA; With 1 CD-ROM (Unix/Linux). MR 2127659
- A. H. Schatz, V. Thomée, and L. B. Wahlbin, Stability, analyticity, and almost best approximation in maximum norm for parabolic finite element equations, Comm. Pure Appl. Math. 51 (1998), no. 11-12, 1349–1385. MR 1639143, DOI 10.1002/(SICI)1097-0312(199811/12)51:11/12<1349::AID-CPA5>3.3.CO;2-T
- A. H. Schatz and L. B. Wahlbin, Interior maximum-norm estimates for finite element methods. II, Math. Comp. 64 (1995), no. 211, 907–928. MR 1297478, DOI 10.1090/S0025-5718-1995-1297478-7
- John W. Green, Harmonic functions in domains with multiple boundary points, Amer. J. Math. 61 (1939), 609–632. MR 90, DOI 10.2307/2371316
- Jinchao Xu and Aihui Zhou, Local and parallel finite element algorithms based on two-grid discretizations, Math. Comp. 69 (2000), no. 231, 881–909. MR 1654026, DOI 10.1090/S0025-5718-99-01149-7
- Miloš Zlámal, Curved elements in the finite element method. I, SIAM J. Numer. Anal. 10 (1973), 229–240. MR 395263, DOI 10.1137/0710022
Bibliographic Information
- Alan Demlow
- Affiliation: Department of Mathematics, University of Kentucky, 715 Patterson Office Tower, Lexington, Kentucky 40506–0027
- MR Author ID: 693541
- Email: demlow@ms.uky.edu
- Charalambos Makridakis
- Affiliation: Department of Applied Mathematics, University of Crete, GR-71409 Heraklion, Greece; and Institute for Applied and Computational Mathematics, Foundation for Research and Technology-Hellas, Vasilika Vouton P.O. Box 1527, GR-71110 Heraklion, Greece
- MR Author ID: 289627
- Email: makr@tem.uoc.gr
- Received by editor(s): November 13, 2007
- Received by editor(s) in revised form: April 26, 2009, and July 22, 2009
- Published electronically: March 1, 2010
- Additional Notes: The first author was supported in part by National Science Foundation grant DMS-0713770.
- © Copyright 2010 American Mathematical Society
- Journal: Math. Comp. 79 (2010), 1233-1262
- MSC (2010): Primary 65N30
- DOI: https://doi.org/10.1090/S0025-5718-10-02346-X
- MathSciNet review: 2629992