The smallest Perron numbers
HTML articles powered by AMS MathViewer
- by Qiang Wu;
- Math. Comp. 79 (2010), 2387-2394
- DOI: https://doi.org/10.1090/S0025-5718-10-02345-8
- Published electronically: April 26, 2010
- PDF | Request permission
Abstract:
A Perron number is a real algebraic integer $\mathbf {\alpha }$ of degree $d \geq 2$, whose conjugates are $\mathbf {\alpha } _{i}$, such that $\mathbf {\alpha } >\max _{2 \leq i \leq d} \vert \mathbf {\alpha } _{i} \vert$. In this paper we compute the smallest Perron numbers of degree $d \leq 24$ and verify that they all satisfy the Lind-Boyd conjecture. Moreover, the smallest Perron numbers of degree 17 and 23 give the smallest house for these degrees. The computations use a family of explicit auxiliary functions. These functions depend on generalizations of the integer transfinite diameter of some compact sets in $\mathbb {C}$References
- David W. Boyd, The maximal modulus of an algebraic integer, Math. Comp. 45 (1985), no. 171, 243–249, S17–S20. MR 790657, DOI 10.1090/S0025-5718-1985-0790657-8
- David W. Boyd, Perron units which are not Mahler measures, Ergodic Theory Dynam. Systems 6 (1986), no. 4, 485–488. MR 873427, DOI 10.1017/S0143385700003643
- A. Dubitskas, Some Diophantine properties of the Mahler measure, Mat. Zametki 72 (2002), no. 6, 828–833 (Russian, with Russian summary); English transl., Math. Notes 72 (2002), no. 5-6, 763–767. MR 1964142, DOI 10.1023/A:1021481611362
- Artūras Dubickas, On numbers which are Mahler measures, Monatsh. Math. 141 (2004), no. 2, 119–126. MR 2037988, DOI 10.1007/s00605-003-0010-0
- V. Flammang, Trace of totally positive algebraic integers and integer transfinite diameter, Math. Comp. 78 (2009), no. 266, 1119–1125. MR 2476574, DOI 10.1090/S0025-5718-08-02120-0
- Valérie Flammang, Georges Rhin, and Jean-Marc Sac-Épée, Integer transfinite diameter and polynomials with small Mahler measure, Math. Comp. 75 (2006), no. 255, 1527–1540. MR 2219043, DOI 10.1090/S0025-5718-06-01791-1
- D. A. Lind, Entropies and factorizations of topological Markov shifts, Bull. Amer. Math. Soc. (N.S.) 9 (1983), no. 2, 219–222. MR 707961, DOI 10.1090/S0273-0979-1983-15162-5
- D. A. Lind, The entropies of topological Markov shifts and a related class of algebraic integers, Ergodic Theory Dynam. Systems 4 (1984), no. 2, 283–300. MR 766106, DOI 10.1017/S0143385700002443
- M. Marden, Geometry of polynomials, Second edition. Mathematical Surveys, no. 3, Amer. Math. Soc., Providence, Rhode Island (1966). MR 0225972 (37:1562)
- E. M. Matveev, On the cardinality of algebraic integers, Mat. Zametki 49 (1991), no. 4, 152–154 (Russian); English transl., Math. Notes 49 (1991), no. 3-4, 437–438. MR 1119233, DOI 10.1007/BF01158227
- C. Batut, K. Belabas, D. Bernardi, H. Cohen, M. Olivier, GP-Pari version 2.1.6, 2002.
- Georges Rhin and Qiang Wu, On the smallest value of the maximal modulus of an algebraic integer, Math. Comp. 76 (2007), no. 258, 1025–1038. MR 2291848, DOI 10.1090/S0025-5718-06-01958-2
- Andrzej Schinzel, A class of algebraic numbers, Tatra Mt. Math. Publ. 11 (1997), 35–42. Number theory (Liptovský Ján, 1995). MR 1475503
- C. J. Smyth, The mean values of totally real algebraic integers, Math. Comp. 42 (1984), no. 166, 663–681. MR 736460, DOI 10.1090/S0025-5718-1984-0736460-5
- Qiang Wu, On the linear independence measure of logarithms of rational numbers, Math. Comp. 72 (2003), no. 242, 901–911. MR 1954974, DOI 10.1090/S0025-5718-02-01442-4
Bibliographic Information
- Qiang Wu
- Affiliation: Department of Mathematics, Southwest University of China, 2 Tiansheng Road Beibei, 400715 Chongqing, China
- Email: qiangwu@swu.edu.cn
- Received by editor(s): June 9, 2009
- Received by editor(s) in revised form: August 21, 2009
- Published electronically: April 26, 2010
- Additional Notes: This Project was supported by the Natural Science Foundation of Chongqing grant CSTC no. 2008BB0261
- © Copyright 2010 American Mathematical Society
- Journal: Math. Comp. 79 (2010), 2387-2394
- MSC (2010): Primary 11C08, 11R06, 11Y40
- DOI: https://doi.org/10.1090/S0025-5718-10-02345-8
- MathSciNet review: 2684371