Convergence analysis for finite element discretizations of the Helmholtz equation with Dirichlet-to-Neumann boundary conditions
HTML articles powered by AMS MathViewer
- by J. M. Melenk and S. Sauter PDF
- Math. Comp. 79 (2010), 1871-1914 Request permission
Abstract:
A rigorous convergence theory for Galerkin methods for a model Helmholtz problem in ${\mathbb {R}}^{d}$, $d \in \{1,2,3\}$ is presented. General conditions on the approximation properties of the approximation space are stated that ensure quasi-optimality of the method. As an application of the general theory, a full error analysis of the classical $hp$-version of the finite element method ($hp$-FEM) is presented for the model problem where the dependence on the mesh width $h$, the approximation order $p$, and the wave number $k$ is given explicitly. In particular, it is shown that quasi-optimality is obtained under the conditions that $kh/p$ is sufficiently small and the polynomial degree $p$ is at least $O(\log k)$.References
- M. Abramowitz and I. A. Stegun. Handbook of Mathematical Functions. Applied Mathematics Series 55. National Bureau of Standards, U.S. Department of Commerce, 1972.
- Mark Ainsworth, Discrete dispersion relation for $hp$-version finite element approximation at high wave number, SIAM J. Numer. Anal. 42 (2004), no. 2, 553–575. MR 2084226, DOI 10.1137/S0036142903423460
- I. Babuška, A. Craig, J. Mandel, and J. Pitkäranta, Efficient preconditioning for the $p$-version finite element method in two dimensions, SIAM J. Numer. Anal. 28 (1991), no. 3, 624–661. MR 1098410, DOI 10.1137/0728034
- Ivo M. Babuška and Stefan A. Sauter, Is the pollution effect of the FEM avoidable for the Helmholtz equation considering high wave numbers?, SIAM J. Numer. Anal. 34 (1997), no. 6, 2392–2423. MR 1480387, DOI 10.1137/S0036142994269186
- I. Babuška and Manil Suri, The optimal convergence rate of the $p$-version of the finite element method, SIAM J. Numer. Anal. 24 (1987), no. 4, 750–776. MR 899702, DOI 10.1137/0724049
- Ivo Babuška, Frank Ihlenburg, Ellen T. Paik, and Stefan A. Sauter, A generalized finite element method for solving the Helmholtz equation in two dimensions with minimal pollution, Comput. Methods Appl. Mech. Engrg. 128 (1995), no. 3-4, 325–359. MR 1368049, DOI 10.1016/0045-7825(95)00890-X
- L. Banjai and S. Sauter, A refined Galerkin error and stability analysis for highly indefinite variational problems, SIAM J. Numer. Anal. 45 (2007), no. 1, 37–53. MR 2285843, DOI 10.1137/060654177
- Susanne C. Brenner and L. Ridgway Scott, The mathematical theory of finite element methods, Texts in Applied Mathematics, vol. 15, Springer-Verlag, New York, 1994. MR 1278258, DOI 10.1007/978-1-4757-4338-8
- Annalisa Buffa and Peter Monk, Error estimates for the ultra weak variational formulation of the Helmholtz equation, M2AN Math. Model. Numer. Anal. 42 (2008), no. 6, 925–940. MR 2473314, DOI 10.1051/m2an:2008033
- Olivier Cessenat and Bruno Despres, Application of an ultra weak variational formulation of elliptic PDEs to the two-dimensional Helmholtz problem, SIAM J. Numer. Anal. 35 (1998), no. 1, 255–299. MR 1618464, DOI 10.1137/S0036142995285873
- Olivier Cessenat and Bruno Després, Using plane waves as base functions for solving time harmonic equations with the ultra weak variational formulation, J. Comput. Acoust. 11 (2003), no. 2, 227–238. Medium-frequency acoustics. MR 2013687, DOI 10.1142/S0218396X03001912
- Simon N. Chandler-Wilde and Peter Monk, Wave-number-explicit bounds in time-harmonic scattering, SIAM J. Math. Anal. 39 (2008), no. 5, 1428–1455. MR 2377284, DOI 10.1137/060662575
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 0520174
- L. Demkowicz. Polynomial exact sequences and projection-based interpolation with applications to Maxwell’s equations. In D. Boffi, F. Brezzi, L. Demkowicz, L. Durán, R. Falk, and M. Fortin, editors, Mixed Finite Elements, Compatibility Conditions, and Applications, volume 1939 of Lectures Notes in Mathematics. Springer-Verlag, 2008.
- A. Deraemaeker, I. Babuška, and P. Bouillard. Dispersion and pollution of the FEM solution for the Helmholtz equation in one, two and three dimesnions. Int. J. Numer. Meth. Eng., 46(4), 1999.
- T. Eibner and J. M. Melenk, An adaptive strategy for $hp$-FEM based on testing for analyticity, Comput. Mech. 39 (2007), no. 5, 575–595. MR 2288643, DOI 10.1007/s00466-006-0107-0
- Charbel Farhat, Isaac Harari, and Ulrich Hetmaniuk, A discontinuous Galerkin method with Lagrange multipliers for the solution of Helmholtz problems in the mid-frequency regime, Comput. Methods Appl. Mech. Engrg. 192 (2003), no. 11-12, 1389–1419. MR 1963058, DOI 10.1016/S0045-7825(02)00646-1
- Charbel Farhat, Radek Tezaur, and Paul Weidemann-Goiran, Higher-order extensions of a discontinuous Galerkin method for mid-frequency Helmholtz problems, Internat. J. Numer. Methods Engrg. 61 (2004), no. 11, 1938–1956. MR 2099956, DOI 10.1002/nme.1139
- C. Gittelson, R. Hiptmair, and I. Perugia. Plane wave discontinuous Galerkin methods. Technical Report NI07088-HOP, Isaac Newton Institute Cambridge, Cambridge, UK, 2007.
- I. S. Gradshteyn and I. M. Ryzhik, Table of integrals, series, and products, Academic Press, New York-London, 1965. Fourth edition prepared by Ju. V. Geronimus and M. Ju. Ceĭtlin; Translated from the Russian by Scripta Technica, Inc; Translation edited by Alan Jeffrey. MR 0197789
- Benqi Guo and Jianming Zhang, Stable and compatible polynomial extensions in three dimensions and applications to the $p$ and $h$-$p$ finite element method, SIAM J. Numer. Anal. 47 (2009), no. 2, 1195–1225. MR 2485450, DOI 10.1137/070688006
- Isaac Harari, Reducing spurious dispersion, anisotropy and reflection in finite element analysis of time-harmonic acoustics, Comput. Methods Appl. Mech. Engrg. 140 (1997), no. 1-2, 39–58. MR 1423456, DOI 10.1016/S0045-7825(96)01034-1
- I. Harari. Finite element dispersion of cylindrical and spherical acoustic waves. Comput. Methods Appl. Mech. Engrg., 190(20–21):2533–2542, 2001.
- I. Harari and D. Avraham. High-order finite element methods for acoustic problems. J. Comput. Acoust., 5(1):33–51, 1997.
- Isaac Harari and Thomas J. R. Hughes, Finite element methods for the Helmholtz equation in an exterior domain: model problems, Comput. Methods Appl. Mech. Engrg. 87 (1991), no. 1, 59–96. MR 1103417, DOI 10.1016/0045-7825(91)90146-W
- Tomi Huttunen and Peter Monk, The use of plane waves to approximate wave propagation in anisotropic media, J. Comput. Math. 25 (2007), no. 3, 350–367. MR 2320239
- Frank Ihlenburg, Finite element analysis of acoustic scattering, Applied Mathematical Sciences, vol. 132, Springer-Verlag, New York, 1998. MR 1639879, DOI 10.1007/b98828
- Frank Ihlenburg and Ivo Babuška, Finite element solution of the Helmholtz equation with high wave number. II. The $h$-$p$ version of the FEM, SIAM J. Numer. Anal. 34 (1997), no. 1, 315–358. MR 1445739, DOI 10.1137/S0036142994272337
- William McLean, Strongly elliptic systems and boundary integral equations, Cambridge University Press, Cambridge, 2000. MR 1742312
- Jens M. Melenk, $hp$-finite element methods for singular perturbations, Lecture Notes in Mathematics, vol. 1796, Springer-Verlag, Berlin, 2002. MR 1939620, DOI 10.1007/b84212
- J. M. Melenk, $hp$-interpolation of nonsmooth functions and an application to $hp$-a posteriori error estimation, SIAM J. Numer. Anal. 43 (2005), no. 1, 127–155. MR 2177138, DOI 10.1137/S0036142903432930
- J. Melenk and S. Sauter. Wave-number explicit convergence analysis for finite element discretizations of the Helmholtz equation. Technical Report 09/2009, Inst. für Mathematik, Univ. Zürich, 2009.
- J. M. Melenk. On Generalized Finite Element Methods. Ph.D. thesis, University of Maryland at College Park, 1995.
- Rafael Muñoz-Sola, Polynomial liftings on a tetrahedron and applications to the $h$-$p$ version of the finite element method in three dimensions, SIAM J. Numer. Anal. 34 (1997), no. 1, 282–314. MR 1445738, DOI 10.1137/S0036142994267552
- J. C. Nédélec. Acoustic and Electromagnetic Equations. Springer, New York, 2001.
- Assad A. Oberai and Peter M. Pinsky, A numerical comparison of finite element methods for the Helmholtz equation, J. Comput. Acoust. 8 (2000), no. 1, 211–221. Finite elements for wave problems (Trieste, 1999). MR 1768338, DOI 10.1142/S0218396X00000133
- Frank W. J. Olver, Asymptotics and special functions, AKP Classics, A K Peters, Ltd., Wellesley, MA, 1997. Reprint of the 1974 original [Academic Press, New York; MR0435697 (55 #8655)]. MR 1429619, DOI 10.1201/9781439864548
- E. Perrey-Debain, O. Laghrouche, P. Bettess, and J. Trevelyan, Plane-wave basis finite elements and boundary elements for three-dimensional wave scattering, Philos. Trans. R. Soc. Lond. Ser. A Math. Phys. Eng. Sci. 362 (2004), no. 1816, 561–577. MR 2075907, DOI 10.1098/rsta.2003.1335
- S. A. Sauter, A refined finite element convergence theory for highly indefinite Helmholtz problems, Computing 78 (2006), no. 2, 101–115. MR 2255368, DOI 10.1007/s00607-006-0177-z
- Alfred H. Schatz, An observation concerning Ritz-Galerkin methods with indefinite bilinear forms, Math. Comp. 28 (1974), 959–962. MR 373326, DOI 10.1090/S0025-5718-1974-0373326-0
- Ch. Schwab, $p$- and $hp$-finite element methods, Numerical Mathematics and Scientific Computation, The Clarendon Press, Oxford University Press, New York, 1998. Theory and applications in solid and fluid mechanics. MR 1695813
- Elias M. Stein, Singular integrals and differentiability properties of functions, Princeton Mathematical Series, No. 30, Princeton University Press, Princeton, N.J., 1970. MR 0290095
- Małgorzata Stojek, Least-squares Trefftz-type elements for the Helmholtz equation, Internat. J. Numer. Methods Engrg. 41 (1998), no. 5, 831–849. MR 1607804, DOI 10.1002/(SICI)1097-0207(19980315)41:5<831::AID-NME311>3.3.CO;2-M
- Radek Tezaur and Charbel Farhat, Three-dimensional discontinuous Galerkin elements with plane waves and Lagrange multipliers for the solution of mid-frequency Helmholtz problems, Internat. J. Numer. Methods Engrg. 66 (2006), no. 5, 796–815. MR 2219901, DOI 10.1002/nme.1575
- Hans Triebel, Interpolation theory, function spaces, differential operators, 2nd ed., Johann Ambrosius Barth, Heidelberg, 1995. MR 1328645
- G. N. Watson, A treatise on the theory of Bessel functions, Cambridge Mathematical Library, Cambridge University Press, Cambridge, 1995. Reprint of the second (1944) edition. MR 1349110
Additional Information
- J. M. Melenk
- Affiliation: Institut für Analysis und Scientific Computing, Technische Universität Wien, Wiedner Hauptstrasse 8-10, A-1040 Wien, Austria
- MR Author ID: 613978
- ORCID: 0000-0001-9024-6028
- Email: melenk@tuwien.ac.at
- S. Sauter
- Affiliation: Institut für Mathematik, Universität Zürich, Winterthurerstr 190, CH-8057 Zürich, Switzerland
- MR Author ID: 313335
- Email: stas@math.uzh.ch
- Received by editor(s): July 15, 2008
- Published electronically: April 27, 2010
- © Copyright 2010 American Mathematical Society
- Journal: Math. Comp. 79 (2010), 1871-1914
- MSC (2010): Primary 35J05, 65N12, 65N30
- DOI: https://doi.org/10.1090/S0025-5718-10-02362-8
- MathSciNet review: 2684350