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TWO-POINT TAYLOR EXPANSIONS AND

ONE-DIMENSIONAL BOUNDARY VALUE PROBLEMS

JOSÉ L. LÓPEZ AND ESTER PÉREZ SINUSÍA

Abstract. We consider second-order linear differential equations ϕ(x)y′′ +
f(x)y′ + g(x)y = h(x) in the interval (−1, 1) with Dirichlet, Neumann or
mixed Dirichlet-Neumann boundary conditions. We consider ϕ(x), f(x), g(x)
and h(x) analytic in a Cassini disk with foci at x = ±1 containing the interval
(−1, 1). The two-point Taylor expansion of the solution y(x) at the extreme
points ±1 is used to give a criterion for the existence and uniqueness of solution
of the boundary value problem. This method is constructive and provides the
two-point Taylor approximation of the solution(s) when it exists.

1. Introduction

Consider the second-order linear differential equation ϕ(x)y′′+ f(x)y′+ g(x)y =
h(x) in a real interval (a, b) with ϕ(x) > 0. By means of an affine change of
independent variable, we can transform the interval (a, b) into the interval (−1, 1)
and, without loss of generality, consider the boundary value problem

(1.1)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ϕ(x)y′′ + f(x)y′ + g(x)y = h(x) in (−1, 1),

B

⎛
⎜⎜⎜⎝

y(−1)

y(1)

y′(−1)

y′(1)

⎞
⎟⎟⎟⎠ =

(
α

β

)
,

with α, β ∈ R and B a 2 × 4 matrix of rank 2 which defines the (Dirichlet, Neu-
mann or mixed) boundary conditions. A standard theorem for the existence and
uniqueness of solution of (1.1) is based on the knowledge of the two-dimensional
linear space of solutions of the equation ϕ(x)y′′ + f(x)y′ + g(x)y = 0 [2, Chap.4,
Sec. 1]. When ϕ, f , g and h are constants or in some other particular situations,
it is possible to find a general solution of the equation (sometimes via the Green’s
function [2, Chap. 4], [8, Chaps. 1 and 3]). But, in general situations, this is not
possible, and that standard criterion for the existence and uniqueness of solution of
(1.1) is not practical. Another well-known criterion for the existence and unique-
ness of solution of (1.1) is based on the Lax-Milgram theorem when (1.1) is an
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elliptic problem [3]. In any case, the determination of the existence and uniqueness
of solution of (1.1) requires a non-systematic detailed study of the problem, for
example, the study of the eigenvalue problem associated to (1.1) [2, Chap. 4, Sec.
2], [8, Chap. 7].

When ϕ, f , g and h are analytic in a disk with center at x = 0 and containing
the interval [−1, 1] with ϕ > 0 in [−1, 1], we may consider the initial value problem

(1.2)

{
ϕ(x)y′′ + f(x)y′ + g(x)y = h(x), x ∈ (−1, 1),

y(0) = y0, y′(0) = y′0,

with y0, y
′
0 ∈ R. Using the Frobenius method we can approximate the solution of

this problem by its Taylor polynomial of degree N at x = 0, yN (x) =
∑N

n=0 ckx
k,

where the coefficients ck are affine functions of c0 = y0 and c1 = y′0. By imposing
the boundary conditions given in (1.1) over yN (x), we obtain an algebraic linear
system for y0 and y′0. The existence and uniqueness of solution of this algebraic
linear system gives us information about the existence and uniqueness of solution
of (1.1). This procedure, although theoretically possible, has a difficult practical
implementation, since the data of the problem are given at x = ±1, not at x = 0
[1, 7]. Moreover, when ϕ, f , g or h have a singularity close to the interval [−1, 1]
or ϕ vanishes at a point close to the interval [−1, 1], the above mentioned disk does
not contain the interval [−1, 1] and the Taylor series of the solution y(x) does not
converge ∀x ∈ [−1, 1]. In this case we can use a Taylor expansion of the solution at
several points along the interval [−1, 1] and match these expansions at intersecting
disks [6, Sec. 7] . In this way, we obtain an approximation of the solution of (1.1)
in the form of a piecewise polynomial in several subintervals of [−1, 1]. But this
approximation is not uniform in the whole interval [−1, 1], and the matching of the
expansions translates into numerical errors.

The purpose of this paper is to improve this idea using, not the standard Taylor
expansion in the associated initial value problem (1.2), but a two-point Taylor
expansion at the extreme points x = ±1 (see [4]) directly in the boundary value
problem (1.1). In [5] we have shown that, when ϕ, f , g and h are analytic in a region
containing the interval [−1, 1], a two-point Taylor expansion of the solution y(x)
at the two extreme points of the interval ±1 is useful to approximate the solution
of the boundary value problem. The convergence region for that two-point Taylor
expansion is a Cassini disk (see Figure 1) that avoids the possible singularities of
the coefficient functions more efficiently than the standard Taylor disk [5].

In [5] we have assumed that problem (1.1) has a unique solution and then we
have proposed several algorithms to approximate that solution. The purpose of
this paper is different. We want to use the two-point Taylor expansion of the
solution y(x) to give an existence and uniqueness criterion based on the data of
the problem, not based on the knowledge of the general solution of the differential
equation, and it does not require a deep functional analysis. This criterion is
systematic and is derived in Section 2. Moreover, our method is constructive and
provides a systematic algorithm to approximate the solution(s) of (1.1) (when it
exists). Section 3 considers the particular case of polynomial coefficients. Section
4 contains some final remarks.



TWO-POINT TAYLOR EXPANSIONS AND 1D BOUNDARY VALUE PROBLEMS 2105

−1 1

Re z

Im z

Figure 1. The Cassini disk Dr = {z ∈ C | |z2 − 1| < r} with foci
at z = ±1 and radius r > 1 contains the real interval [−1, 1].

2. Existence and uniqueness criterion

Assume that the coefficient functions ϕ, f , g, h in (1.1) are analytic in the Cassini
disk Dr = {z ∈ C | |z2 − 1| < r} with foci at z = ±1 and Cassini’s radius r, with
r > 1 and ϕ(x) > 0 in Dr (see [4]). The requirement r > 1 assures that the interval
(−1, 1) is contained in the Cassini disk Dr (see Figure 1).

Then, we have that any solution of the differential equation in (1.1) can be
represented in the form of a two-point Taylor expansion at the base points x = ±1
[5]

(2.1) y(x) =

∞∑
n=0

[an + bnx](x
2 − 1)n, x ∈ (−1, 1),

with an and bn two sequences of complex numbers related to the derivatives of y(x)
at x = ±1 [4]. This series is absolutely and uniformly convergent in the interval
[−1, 1]. We also have [5]:

y′(x) =
∞∑
k=0

{[(2k + 1)bk + 2(k + 1)bk+1] + 2(k + 1)ak+1x} (x2 − 1)k,

y′′(x) =
∞∑
k=0

2(k + 1) {[(2k + 1)ak+1 + 2(k + 2)ak+2]

+ [(2k + 3)bk+1 + 2(k + 2)bk+2]x} (x2 − 1)k.

(2.2)

From (2.1) and (2.2) we have

(2.3)

⎛
⎜⎜⎝

y(−1)
y(1)

y′(−1)
y′(1)

⎞
⎟⎟⎠ = T

⎛
⎜⎜⎝
a0
b0
a1
b1

⎞
⎟⎟⎠ ,

where T is the rank-4 matrix

(2.4) T =

⎛
⎜⎜⎝
1 −1 0 0
1 1 0 0
0 1 −2 2
0 1 2 2

⎞
⎟⎟⎠ .

(The first four coefficients a0, b0, a1, b1 of the two-point Taylor expansion (2.1) are
related to y(−1), y(1), y′(−1), y′(1) through the matrix T−1.) Then, the boundary
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value problem (1.1) reads

(2.5)

⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

ϕ(x)y′′ + f(x)y′ + g(x)y = h(x) in (−1, 1),

R̃

⎛
⎜⎜⎜⎝
a0

b0

a1

b1

⎞
⎟⎟⎟⎠ =

(
α

β

)
,

with R̃ = BT . Denote by Ri,j , i = 1, 2, j = 1, 2, 3, 4, the entries of this matrix R̃.
On the other hand, as it happens in the standard Frobenius method for initial

value problems, the coefficients an and bn of the two-point Taylor expansion (2.1) of
the solution y(x) of the differential equation in (2.5) satisfy a system of recurrences
of the form [5]

an =

n−1∑
k=0

[An,kak +Bn,kbk] + En, n = 2, 3, 4, . . . ,

bn =
n−1∑
k=0

[Cn,kak +Dn,kbk] + Fn, n = 2, 3, 4, . . . ,

(2.6)

where the coefficients An,k, Bn,k, En, Cn,k, Dn,k and Fn depend on the two-point
Taylor coefficients of ϕ, f , g and h at x = ±1. In general, as in the standard Frobe-
nius method, the computation of the coefficients an and bn involve the previous
coefficients a0, b0, . . . , an−1 and bn−1. But when ϕ, f , g and h are polynomials,
these recurrences are of finite order (say s) and the computation of the coefficients
an and bn only involve the previous 2s coefficients an−s, bn−s, . . . , an−1 and bn−1.
We illustrate this situation with the following example.

Example 2.1. Consider the boundary value problem

(2.7)

⎧⎨
⎩
(x2 + 1)2y′′ + 3x(x2 + 1)y′ + 2y = 0 in (−1, 1),

y(−1) = y(1) =
1

2
.

We have ϕ(x) = (x2 + 1)2, f(x) = 3x(x2 + 1), g(x) = 2 and h = 0. The function ϕ
is nonvanishing in the Cassini disk Dr with foci at x = ±1 and [−1, 1] ⊂ Dr for any
1 < r < 2 (see [5]). The two-point Taylor expansions of the coefficient functions
are finite:

ϕ(x) = [4 + 0 · x] + [4 + 0 · x](x2 − 1) + [1 + 0 · x](x2 − 1)2,

f(x) = [0 + 6 · x] + [0 + 3 · x](x2 − 1), g(x) = [2 + 0 · x],

and then, the recursions (2.6) are of order s = 3. For n = 2, 3, 4, . . . and a−1 =
b−1 = 0,

8n(n− 1)an = −2(n− 1)[(2n− 3) + 2(3n− 4)]an−1

− [(4(n− 2)2 + n− 1) + 2(n− 2)(3n− 5)]an−2 − 2(n− 2)(n− 3)an−3,

16n(n− 1)bn = −4(n− 1)[(2n− 1) + 6(n− 1)]bn−1

− [(4n− 5)(2n− 3) + 2 + 3(2n− 3)2]bn−2 − [4(n− 2)2 − 1]bn−3. �

(2.8)
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As in the Frobenius method, the order of the recurrences is at least two, that
is, s ≥ 2. But, as a difference with the Frobenius method where we only have one
recurrence for the sequence of standard Taylor coefficients, here we have a system
of two recurrences. In the standard Frobenius method designed for an initial value
problem of the form: {

ϕ(x)y′′ + f(x)y′ + g(x)y = h(x),

y(0) = c0, y′(0) = c1,

we look for a solution of the form y(x) =
∑∞

n=0 cnx
n. Then, the computation of

the coefficients cn for n ≥ 2 only requires the initial seed c0 and c1 that are data of
the problem.

The situation is different for the boundary value problem (2.5) when we look for
a solution of the form (2.1). Since, in this case, we have a system of two recurrences
instead of only one recurrence, the computation of the coefficients an, bn for n ≥ 2
requires the initial seed a0, a1, b0 and b1. This does not mean that the linear space
of solutions of the differential equation in (2.5) has dimension four; this space has
of course dimension two. It is happening here that, apart from the two-dimensional
linear space S of (true) solutions of the differential equation in (2.5), there is a
bigger space of formal solutions W defined by

W :=

{
y(x) =

∞∑
n=0

[an + bnx](x
2 − 1)n

∣∣∣∣ an, bn given in (2.6), a0, b0, a1, b1 ∈ R

}
.

Formally, all the two-point series in W are solutions of the differential equation in
(2.5). But not all of them are convergent, only a subset: the two-dimensional linear
space S of (true) solutions that may be identified as

S =

{
y ∈ W

∣∣∣∣
∞∑

n=0

[an + bnx](x
2 − 1)n is uniformly convergent in [−1, 1]

}
.

In order to give a more practical characterization of S, we must find a linear system
of two independent equations for the parameters a0, b0, a1, b1. This is the purpose
of the remainder of the section.

For a fixed m ∈ N, m ≥ 2, we define the vector

vn := (an+2−m, bn+2−m, an+3−m, bn+3−m, . . . , an, bn, an+1, bn+1) ∈ R
2m

with a−k = b−k = 0 for k ∈ N. In particular we have

vm−2 = (a0, b0, a1, b1, . . . , am−1, bm−1) and v0 = (0, 0, . . . , 0, 0, a0, b0, a1, b1).

For n = 0, 1, 2, . . . ,m− 2, define the (2m)× (2m) matrix
(2.9)

Mn :=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 . . . 0
0 0 0 1 0 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 0 . . . 0 1 0
0 0 0 0 0 . . . 0 0 1
0 . . . 0 An+2,0 Bn+2,0 . . . . . . An+2,n+1 Bn+2,n+1

0 . . . 0 Cn+2,0 Dn+2,0 . . . . . . Cn+2,n+1 Dn+2,n+1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.
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The only non-null elements of this matrix are those corresponding to the en-
tries mi,i+2 = 1, i = 1, 2, 3, . . . , 2m − 2, and to the entries m2m−1,k, m2m,k,
k = 0, 1, 2, . . . , n+ 1. In particular, we have

M0 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 . . . 0
0 0 0 1 0 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 0 . . . 0 1 0
0 0 0 0 0 . . . 0 0 1
0 0 . . . 0 0 A2,0 B2,0 A2,1 B2,1

0 0 . . . 0 0 C2,0 D2,0 C2,1 D2,1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

and

Mm−2 =

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0 0 . . . 0
0 0 0 1 0 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 0 . . . 0 1 0
0 0 0 0 0 . . . 0 0 1

Am,0 Bm,0 Am,1 Bm,1 . . . . . . . . . Am,m−1 Bm,m−1

Cm,0 Dm,0 Cm,1 Dm,1 . . . . . . . . . Cm,m−1 Dm,m−1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

We also need, for n = 0, 1, 2, . . . ,m− 2, to define the vector

cn := (0, 0, . . . , 0, 0, En+2, Fn+2) ∈ R
2m.

Then, the system of recurrences (2.6) can be written in a matrix form. For n =
1, 2, 3, . . . ,m− 1 we have

vn = Mn−1vn−1 + cn−1.

To find the solution of this linear recurrence for the vector vn, we recurrently define
the following matrices:

M0 = M0, Mn = MnMn−1, n = 1, 2, 3, . . . ,m− 2,

C0 = c0, Cn = MnCn−1 + cn, n = 1, 2, 3, . . . ,m− 2,

or

Mn =

n∏
k=0

Mn−k,

Cn = cn +

n−1∑
k=0

[Mn ·Mn−1 · · ·Mk+1]ck.

Then, we find

vm−1 = Mm−2v0 + Cm−2
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or, in an extended form,⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
�
.
.
.
�
�
am

bm

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
�
.
.
.
�
�

B2m−1

B2m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� � � � � . . . �
� � � � � . . . �
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . .
� � � � � . . . �
� � � � � . . . �
� . . . � M2m−1,2m−3 M2m−1,2m−2 M2m−1,2m−1 M2m−1,2m

� . . . � M2m,2m−3 M2m,2m−2 M2m,2m−1 M2m,2m

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
.
.
0
a0

b0
a1

b1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where the �’s denote real (unspecified) numbers. The two-point Taylor series of S
converge in [−1, 1] if they converge at x = 0, and they converge at x = 0 if and
only if limm→∞(am, bm) = (0, 0). Then, taking the limit m → ∞ into the above
equation we find⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
�
.
.
.
�
�
0
0

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

=

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

� � � � � � � . . . �
� � � � � � � . . . �
. . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .
� � � � � � � . . . �
� � � � � � � . . . �
� � . . . � � R3,1 R3,2 R3,3 R3,4

� � . . . � � R4,1 R4,2 R4,3 R4,4

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

0
0
.
.
0
a0
b0
a1
b1

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

+

⎛
⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

�
�
.
.
.
�
�
−γ
−δ

⎞
⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

,

where

R4−i,j := lim
m→∞

M2m−i,2m+j−4, i = 0, 1, j = 1, 2, 3, 4,

−γ := lim
m→∞

B2m−1, −δ := lim
m→∞

B2m.
(2.10)

Then, the two equations that we were looking for are

(2.11)

(
R3,1 R3,2 R3,3 R3,4

R4,1 R4,2 R4,3 R4,4

)⎛
⎜⎜⎝
a0
b0
a1
b1

⎞
⎟⎟⎠ =

(
γ
δ

)
.

These two equations are linearly independent and reduce the number of free pa-
rameters from four to two. The proof of the linear independence of (2.11) is as
follows. Consider the initial value problem

(2.12)

{
ϕ(x)y′′ + f(x)y′ + g(x)y = h(x),

y(−1) = y−1, y′(−1) = y′−1
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with y−1, y
′
−1 ∈ R and seek a solution in the form (2.1). The coefficients a0, b0, a1, b1

of the two-point Taylor solution of this initial value problem are solutions of the
linear system (2.11) and also of the two linear equations imposed by the initial
conditions y(−1) = y−1 and y′(−1) = y′−1:⎛

⎜⎜⎝
1 −1 0 0
0 1 −2 2

R3,1 R3,2 R3,3 R3,4

R4,1 R4,2 R4,3 R4,4

⎞
⎟⎟⎠

⎛
⎜⎜⎝
a0
b0
a1
b1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
y−1

y′−1

γ
δ

⎞
⎟⎟⎠ .

If the rank of the coefficient matrix of this system was not four, then the initial
value problem (2.12) would have more than one solution or no solution. Therefore,
the two equations in (2.11) are linearly independent.

One precision must be done at this point. It is possible that some or all the
row coefficients M2m−i,2m+j−4, i = 0, 1, j = 1, 2, 3, 4, in the matrix M have no
limit when m → ∞. But then, at least, there must be two subsequences of row
coefficients M2m−i,2m+j−4, i = 0, 1, j = 1, 2, 3, 4, in the matrix M having as a limit
two independent rows (R3,1, R3,2, R3,3, R3,4), (R4,1, R4,2, R4,3, R4,4). Otherwise,
the initial value problem (2.12) would have more than one solution or no solution.
Then, the limits of (2.10) must be understood as limits of certain subsequences.

Joining the two equations in (2.11) with the two algebraic equations provided
by the boundary conditions in (2.5), we find the following linear system of four
equations and four unknowns:

(2.13)

⎛
⎜⎜⎝
R1,1 R1,2 R1,3 R1,4

R2,1 R2,2 R2,3 R2,4

R3,1 R3,2 R3,3 R3,4

R4,1 R4,2 R4,3 R4,4

⎞
⎟⎟⎠

⎛
⎜⎜⎝
a0
b0
a1
b1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
α
β
γ
δ

⎞
⎟⎟⎠ .

The two first equations of this system are obtained from the boundary conditions,
whereas the other two equations are obtained from the differential equation in (2.5).

At this point, we can formulate the following existence and uniqueness criterion
for the boundary value problem (1.1):

The existence and uniqueness of solution of the boundary value problem (1.1) is
equivalent to the existence and uniqueness of solution of the linear system (2.13).
More precisely,

• When the linear system (2.13) has a unique solution (a0, b0, a1, b1), the
boundary value problem (1.1) has a unique solution given by (2.1) and (2.6)
with (a0, b0, a1, b1) the solution of (2.13).

• When the linear system (2.13) has infinite solutions (one- or two of the
parameters a0, b0, a1, b1 are free), the boundary value problem (1.1) has a
one- or two-parametric family of solutions given by (2.1) and (2.6) with
(a0, b0, a1, b1) the solution of (2.13).

• When the linear system (2.13) has no solution, the boundary value problem
(1.1) has no solution.

The two first rows of the system (2.13) are independent. The two last rows are
also independent. This means that the dimension of the space of solutions of (1.1)
is at most two.

If we denote by R the coefficient matrix of the system (2.13), x := (a0, b0, a1, b1)
the vector of unknowns and Λ := (α, β, γ, δ) the vector of independent terms, (2.13)
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can be written as the system Rx = Λ. In practice, the exact computation of the
limits (2.10) is impossible, and we must approximate them in the form

R4−i,j �M2m−i,2m+j−4, i = 0, 1, j = 1, 2, 3, 4,

−γ �B2m−1, −δ � B2m
(2.14)

for a large enough value of m. This means that, in practice, we work with an
approximate system Rmxm = Λm instead of the system Rx = Λ. Then, the values
of the coefficients xm obtained from Rmxm = Λm are approximations of the exact
coefficients a0, b0, a1, b1.

Also, in practice, we must apply the above existence and uniqueness criterion
for the solution of (1.1) using the approximate linear system Rmxm = Λm instead
of the exact system Rx = Λ. Nevertheless, the conclusions about existence and
uniqueness are the same unless the system Rx = Λ is not well conditioned. In
this case, the ranks of the coefficient matrix Rm and/or of the augmented matrix
(Rm|Λm) sensibly depend on the precision in the computation of the approximate
limits (2.14).

3. Polynomial coefficients

When the coefficient functions ϕ, f , g and h are polynomials, we can somehow
simplify the formulation of the above existence and uniqueness criterion. In general,
as we have seen in the previous section, the computation of the coefficients (an, bn)
requires a matrix of size (2m) × (2m) with m ≥ n. This means that we need
matrices of increasing size to compute the coefficients. In the case of polynomial
coefficients, the situation is different. The recurrences (2.6) are of constant order
s independent of n and the computation of the coefficients an and bn involve only
the previous 2s coefficients an−s, bn−s, . . . , an−1 and bn−1. Thus, in this case, we
do not need matrices of increasing size, but matrices of constant size (2s)× (2s).

The recurrence system (2.6) for polynomial coefficients is of the form

an =

n−1∑
k=n−s

[An,kak +Bn,kbk] + En,

bn =
n−1∑

k=n−s

[Cn,kak +Dn,kbk] + Fn

(3.1)

for a certain s ∈ N, n = 0, 1, 2, . . ., with a−k = b−k = 0, n, k ∈ N. The discussion
is identical to the one in the previous section, but we can eliminate the restriction
n ≤ m. Moreover, we can simplify the computations, because now the size of the
matrices Mn does not depend on n. We can now define the matrices Mn of fixed
size (2s)× (2s) in the form
(3.2)

Mn :=

⎛
⎜⎜⎜⎝

0 0 1 0 0 0 0 . . . 0
0 0 0 1 0 0 0 . . . 0
. . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . .
0 0 0 0 0 . . . 0 1 0
0 0 0 0 0 . . . 0 0 1

An+2,n+2−s Bn+2,n+2−s . . . An+2,0 Bn+2,0 . . . . . . An+2,n+1 Bn+2,n+1
Cn+2,n+2−s Dn+2,n+2−s . . . Cn+2,0 Dn+2,0 . . . . . . Cn+2,n+1 Dn+2,n+1

⎞
⎟⎟⎟⎠

instead of the form (2.9), with An,−k = Bn,−k = Cn,−k = Dn,−k = 0 for k ∈ N.
The computation of the system (2.13) is identical. The only difference is that now
the matrices Mm are of size (2s)× (2s) ∀m ∈ N and the vectors Cm ∈ R2s ∀m ∈ N.
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Figure 2. Plot of the exact solution y(x) = (x2 + 1)−1 (curve on
the top) of (2.7) and the approximations yn(x) for n = 0, 1, 2, . . . , 8.

Example 3.1. As an example of a boundary value problem with polynomial coef-
ficients, we consider the problem defined in (2.7). The recurrences (2.8) are of order
s = 3 and may be written in the form vn+1 = Mnvn with vn = (an−1, bn−1, an, bn,
an+1, bn+1) and

Mn=

⎛
⎜⎜⎜⎜⎜⎜⎝

0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

n(1−n)
4(n+1)(n+2)

0 − 10n2+3n+1
8(n+1)(n+2)

0 − 8n+5
4(n+2)

0

0 1−4n2

16(n+1)(n+2)
0 − 10n2+11n+4

8(n+1)(n+2)
0 − 8n+9

4(n+2)

⎞
⎟⎟⎟⎟⎟⎟⎠
.

For example, for m = 10, the linear system Rmxm = Λm reads⎛
⎜⎜⎝

1 −1 0 0
1 1 0 0

−0.0159524 0 −0.033858 0
0 −1.54795 0 −9.84517

⎞
⎟⎟⎠

⎛
⎜⎜⎝
a0
b0
a1
b1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝
0.5
0.5
0
0

⎞
⎟⎟⎠ .

This system has a unique solution (a0, b0, a1, b1) = (0.5, 0,−0.235579, 0), and then
the boundary value problem (2.7) has a unique solution that can be approximated
by the two-point Taylor polynomials

(3.3) yn(x) =

n∑
k=0

[ak + bkx](x
2 − 1)k, n = 0, 1, 2, . . . .

For example, we obtain the following polynomials for n = 2, 4 and 6:

y2(x) = 0.5− 0.235579(x2 − 1) + 0.115987(x2 − 1)2,

y4(x) = y2(x)− 0.0569417(x2 − 1)3 + 0.0277667(x2 − 1)4,

y6(x) = y4(x)− 0.0133721(x2 − 1)5 + 0.00629436(x2 − 1)6.

(3.4)

Figure 2 illustrates the accuracy of the approximations yn(x) in (3.3) obtained for
m = 10 and n = 0, 1, 2, . . . , 8. �

The following example shows the application of the above criterion to a boundary
value problem depending on parameters.
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Example 3.2. Consider the boundary value problem

(3.5)

⎧⎪⎨
⎪⎩
y′′ − 2xy′ − 2y = 2a, in (−1, 1),

y(−1) + y(1) = c,

y′(−1) + b y′(1) = 0,

with a, b and c real parameters. We have ϕ(x) = 1, f(x) = −2x, g(x) = −2 and
h(x) = 2a. The two-point Taylor expansions of these coefficient functions are finite:

ϕ(x) = [1 + 0 · x], f(x) = [0− 2 · x], g(x) = [−2 + 0 · x], h(x) = [2a+ 0 · x],
and then, the recursions (2.6) are of order s = 2. For n = 2, 3, 4, . . .

2n(n− 1)an =− (n− 1)(2n− 5)an−1 + (2n− 3)an−2 +
a

2
δn−2,0,

2nbn =− (2n− 3)bn−1 + 2bn−2.
(3.6)

The recurrences (3.6) may be written in the form vn+1 = Mnvn + s δn,0 with
vn = (an, bn, an+1, bn+1) and

Mn =

⎛
⎜⎜⎝

0 0 1 0
0 0 0 1

1+2n
2(n+1)(n+2) 0 − 2n−1

2(n+2) 0

0 1
n+2 0 − 2n+1

2(n+2)

⎞
⎟⎟⎠ , s =

⎛
⎜⎜⎝

0
0

a/4
0

⎞
⎟⎟⎠ .

For m = 10, the linear system Rmxm = Λm is given by
(3.7)⎛

⎜⎜⎝
2 0 0 0
0 b+ 1 2(b− 1) 2(b+ 1)

0.016618 0 −0.0166177 0
0 0.186893 0 −0.250427

⎞
⎟⎟⎠

⎛
⎜⎜⎝
a0
b0
a1
b1

⎞
⎟⎟⎠ =

⎛
⎜⎜⎝

c
0

−0.016618a
0

⎞
⎟⎟⎠ .

Now applying the criterion of Section 2, the existence and uniqueness of solution
of (3.5) is equivalent to the existence and uniqueness of solution of (3.7) that, in
this example, depends on the values of the parameters a, b and c:

• If b 
= −1, the system (3.7) has a unique solution and then (3.5) has a
unique solution.

• If b = −1 and 2a + c = 0, the system (3.7) has infinite solutions and then
(3.5) has infinite solutions.

• If b = −1 and 2a + c 
= 0, the system (3.7) has no solution and then (3.5)
has no solution.

We next observe that the results obtained with this criterion coincide with the
ones provided by the standard criterion. The general solution of the differential
equation given in (3.5) is

y(x) = c1e
x2

erf(x) + c2e
x2 − a.

The standard criterion of existence and uniqueness of solution depends on the
existence of real numbers c1 and c2 that makes y(x) compatible with the boundary
conditions in (3.5). That is, it depends on the existence of a solution of the linear
system

(3.8)

⎛
⎝ 0 2e
[1 + e

√
π erf(1)](b+ 1)√

π
(b− 1)e

⎞
⎠(

c1
c2

)
=

(
2a+ c

0

)
.
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Figure 3. Plot of the exact solution y(x) =√
π(1−b)(2a+c)

2(1+b)(1+e
√
πerf(1))

ex
2

erf(x) + 2a+c
2e ex

2 − a (dashed) of (3.5)

for a = c = 1, b = 2 (first graph), a = c = −1, b = −2 (second
graph) and the approximations yn(x) for n = 0, 1, 2, . . . , 5.

It is easy to check that the study of the existence and uniqueness of solution of
(3.8) provides the same conclusions as the ones obtained with our criterion.

Figure 3 illustrates the accuracy of the approximations yn(x) in (3.3) obtained
for m = 10, n = 0, 1, 2, . . . , 5 and different values of the parameters a, b and c.

4. Final remarks

At the end of Section 2 we have given a straightforward and systematic crite-
rion for the existence and uniqueness of solution of boundary value problems for
second-order linear differential equations (1.1) when the coefficients of the differen-
tial equation are analytic functions inside a Cassini disk containing the domain of
the differential equation. The criterion is very simple and establishes that the exis-
tence and uniqueness of solution of the boundary value problem (1.1) is equivalent
to the existence and uniqueness of solution of the algebraic linear system Rx = Λ
given in (2.13). Half of the entrances of the system (2.13) are defined by the limits
(2.10), whose exact computation is, in general, very difficult. In practice, the en-
trances of the system (2.13) must be computed approximately in the form (2.14),
and then the solution of the system Rx = Λ, x = (a0, b0, a1, b1) is approximated by
the solution of the system Rmxm = Λm. Also, in practice, we must apply the above
existence and uniqueness criterion for the solution of (1.1) using the approximate
linear system Rmxm = Λm instead of the exact linear system Rx = Λ. Never-
theless, the conclusions about the existence and uniqueness of solution are exact
unless the system Rx = Λ is not well-conditioned. In this case, the ranks of the
coefficient matrix Rm and/or of the augmented matrix (Rm|Λm) sensibly depend
on the precision in the computation of the approximate limits (2.14).

Formally, the criterion proposed in this paper is similar to the standard criterion,
based on the knowledge of the space of solutions: both criteria relate the existence
and uniqueness of solution of the boundary value problem (1.1) to the existence
and uniqueness of a solution of an algebraic linear system. As a difference with
that standard criterion, our criterion does not require the knowledge of the general
solution of the differential equation. This qualitative difference is very important
when the general solution of the equation is not known. In this case, the standard
criterion is not useful, whereas our criterion can always be applied (except in the
case of bad conditioning as discussed before).
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The use of the alternative theorem for boundary value problems [8, Chap. 3,
Sec. 4] does not help to simplify our criterion. This theorem asserts that problem
(1.1) has a unique solution if and only if a certain associated completely homo-
geneous problem has a unique solution. The application of our technique to that
completely homogeneous problem does not suppose any substantial simplification;
the only difference is that for that homogeneous problem, the algebraic linear sys-
tem (2.13) is homogeneous. But moreover, when that homogeneous linear system
has many solutions, we would still have to decide between many solutions or no
solution for the problem (1.1) by computing the inner product of the independent
term of (1.1) with a system of independent solutions of the associated homogeneous
problem [8, p. 229].
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