Two-point Taylor expansions and one-dimensional boundary value problems
HTML articles powered by AMS MathViewer
- by José L. López and Ester Pérez Sinusía;
- Math. Comp. 79 (2010), 2103-2115
- DOI: https://doi.org/10.1090/S0025-5718-10-02370-7
- Published electronically: April 29, 2010
- PDF | Request permission
Abstract:
We consider second-order linear differential equations $\varphi (x)y”+f(x)y’+g(x)y=h(x)$ in the interval $(-1,1)$ with Dirichlet, Neumann or mixed Dirichlet-Neumann boundary conditions. We consider $\varphi (x)$, $f(x)$, $g(x)$ and $h(x)$ analytic in a Cassini disk with foci at $x=\pm 1$ containing the interval $(-1,1)$. The two-point Taylor expansion of the solution $y(x)$ at the extreme points $\pm 1$ is used to give a criterion for the existence and uniqueness of solution of the boundary value problem. This method is constructive and provides the two-point Taylor approximation of the solution(s) when it exists.References
- Cenk Keşan, Taylor polynomial solutions of linear differential equations, Appl. Math. Comput. 142 (2003), no. 1, 155–165. MR 1978253, DOI 10.1016/S0096-3003(02)00290-4
- A. C. King, J. Billingham, and S. R. Otto, Differential equations, Cambridge University Press, Cambridge, 2003. Linear, nonlinear, ordinary, partial. MR 1996393, DOI 10.1017/CBO9780511755293
- P. D. Lax and A. N. Milgram, Parabolic equations, Contributions to the theory of partial differential equations, Ann. of Math. Stud., no. 33, Princeton Univ. Press, Princeton, NJ, 1954, pp. 167–190. MR 67317
- José L. López and Nico M. Temme, Two-point Taylor expansions of analytic functions, Stud. Appl. Math. 109 (2002), no. 4, 297–311. MR 1934653, DOI 10.1111/1467-9590.00225
- José L. López, Ester Pérez Sinusía, and Nico M. Temme, Multi-point Taylor approximations in one-dimensional linear boundary value problems, Appl. Math. Comput. 207 (2009), no. 2, 519–527. MR 2489122, DOI 10.1016/j.amc.2008.11.015
- A. B. Olde Daalhuis and F. W. J. Olver, On the asymptotic and numerical solution of linear ordinary differential equations, SIAM Rev. 40 (1998), no. 3, 463–495. MR 1642803, DOI 10.1137/S0036144597315341
- M. Sezer, A method for the approximate solution of the second-order linear differential equations in terms of Taylor polynomials, Int. J. Math. Edu. Sci. Technol. 27 (1996), 821–834.
- I. Stakgold, Green’s functions and boundary value problems, Wiley and Sons, New York, 1988.
Bibliographic Information
- José L. López
- Affiliation: Departamento de Ingeniería Matemática e Informática, Universidad Pública de Navarra, 31006-Pamplona, Spain
- ORCID: 0000-0002-6050-9015
- Email: jl.lopez@unavarra.es
- Ester Pérez Sinusía
- Affiliation: Departamento de Matemática Aplicada, Universidad de Zaragoza, 50018-Zaragoza, Spain
- Email: ester.perez@unizar.es
- Received by editor(s): May 5, 2009
- Published electronically: April 29, 2010
- Additional Notes: The Ministerio de Ciencia y Tecnología (REF. MTM2007-63772) and the Gobierno de Navarra (Res. 228/2008) are acknowledged by their financial support. The Department of Theoretical Physics of the University of Zaragoza is also acknowledged by its hospitality.
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 79 (2010), 2103-2115
- MSC (2010): Primary 34A25, 34B05, 41A58
- DOI: https://doi.org/10.1090/S0025-5718-10-02370-7
- MathSciNet review: 2684357