A multimodular algorithm for computing Bernoulli numbers
HTML articles powered by AMS MathViewer
- by David Harvey;
- Math. Comp. 79 (2010), 2361-2370
- DOI: https://doi.org/10.1090/S0025-5718-2010-02367-1
- Published electronically: June 2, 2010
- PDF | Request permission
Abstract:
We describe an algorithm for computing Bernoulli numbers. Using a parallel implementation, we have computed $B_k$ for $k = 10^8$, a new record. Our method is to compute $B_k$ modulo $p$ for many small primes $p$ and then reconstruct $B_k$ via the Chinese Remainder Theorem. The asymptotic time complexity is $O(k^2 \log ^{2+\varepsilon } k)$, matching that of existing algorithms that exploit the relationship between $B_k$ and the Riemann zeta function. Our implementation is significantly faster than several existing implementations of the zeta-function method.References
- S. Chowla and P. Hartung, An “exact” formula for the $m$-th Bernoulli number, Acta Arith. 22 (1972), 113–115. MR 308036, DOI 10.4064/aa-22-1-113-115
- Sandra Fillebrown, Faster computation of Bernoulli numbers, J. Algorithms 13 (1992), no. 3, 431–445. MR 1176671, DOI 10.1016/0196-6774(92)90048-H
- Greg Fee and Simon Plouffe, An efficient algorithm for the computation of Bernoulli numbers, 2007, preprint http://arxiv.org/abs/math/0702300.
- Pierrick Gaudry, Alexander Kruppa, and Paul Zimmermann, A GMP-based implementation of Schönhage-Strassen’s large integer multiplication algorithm, ISSAC 2007, ACM, New York, 2007, pp. 167–174. MR 2396199, DOI 10.1145/1277548.1277572
- Torbjörn Granlund, The GNU Multiple Precision Arithmetic library, 2008, http://gmplib.org/.
- Kenneth Ireland and Michael Rosen, A classical introduction to modern number theory, 2nd ed., Graduate Texts in Mathematics, vol. 84, Springer-Verlag, New York, 1990. MR 1070716, DOI 10.1007/978-1-4757-2103-4
- Bernd C. Kellner, Über irreguläre Paare höherer Ordnungen, Diplomarbeit, 2002.
- —, calcbn, 2008, http://www.bernoulli.org/.
- Serge Lang, Cyclotomic fields I and II, 2nd ed., Graduate Texts in Mathematics, vol. 121, Springer-Verlag, New York, 1990. With an appendix by Karl Rubin. MR 1029028, DOI 10.1007/978-1-4612-0987-4
- Serge Lang, Undergraduate analysis, 2nd ed., Undergraduate Texts in Mathematics, Springer-Verlag, New York, 1997. MR 1476913, DOI 10.1007/978-1-4757-2698-5
- Niels Möller, On Schönhage’s algorithm and subquadratic integer GCD computation, Math. Comp. 77 (2008), no. 261, 589–607. MR 2353968, DOI 10.1090/S0025-5718-07-02017-0
- Peter L. Montgomery, Modular multiplication without trial division, Math. Comp. 44 (1985), no. 170, 519–521. MR 777282, DOI 10.1090/S0025-5718-1985-0777282-X
- Władysław Narkiewicz, The development of prime number theory, Springer Monographs in Mathematics, Springer-Verlag, Berlin, 2000. From Euclid to Hardy and Littlewood. MR 1756780, DOI 10.1007/978-3-662-13157-2
- The PARI Group, Bordeaux, PARI/GP, version 2.3.3, 2007, available from http://pari.math.u-bordeaux.fr/.
- Oleksandr Pavlyk, Today We Broke the Bernoulli Record: From the Analytical Engine to Mathematica, 2008, posted on Wolfram Blog (http://blog.wolfram.com/) on 29th April 2008, retrieved 15th June 2008.
- Victor Shoup, NTL: A library for doing number theory, http://www.shoup.net/ntl/, 2007.
- Igor Shparlinski, On finding primitive roots in finite fields, Theoret. Comput. Sci. 157 (1996), no. 2, 273–275. MR 1389773, DOI 10.1016/0304-3975(95)00164-6
- William Stein and David Joyner, Sage: System for algebra and geometry experimentation, Communications in Computer Algebra (ACM SIGSAM Bulletin) 39 (2005), no. 2, 61–64.
- A. Schönhage and V. Strassen, Schnelle Multiplikation grosser Zahlen, Computing (Arch. Elektron. Rechnen) 7 (1971), 281–292 (German, with English summary). MR 292344, DOI 10.1007/bf02242355
- William Stein, Modular forms, a computational approach, Graduate Studies in Mathematics, vol. 79, American Mathematical Society, Providence, RI, 2007. With an appendix by Paul E. Gunnells. MR 2289048, DOI 10.1090/gsm/079
- Joachim von zur Gathen and Jürgen Gerhard, Modern computer algebra, 2nd ed., Cambridge University Press, Cambridge, 2003. MR 2001757
- Wolfram Research, Inc., Mathematica 6.0, 2007, http://www.wolfram.com/.
Bibliographic Information
- David Harvey
- Affiliation: Courant Institute of Mathematical Sciences, New York University, 251 Mercer Street, New York, New York 10012
- MR Author ID: 734771
- ORCID: 0000-0002-4933-658X
- Email: dmharvey@cims.nyu.edu
- Received by editor(s): November 17, 2008
- Published electronically: June 2, 2010
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 79 (2010), 2361-2370
- MSC (2010): Primary 11B68; Secondary 11Y60
- DOI: https://doi.org/10.1090/S0025-5718-2010-02367-1
- MathSciNet review: 2684369