Smooth analysis of the condition number and the least singular value
HTML articles powered by AMS MathViewer
- by Terence Tao and Van Vu;
- Math. Comp. 79 (2010), 2333-2352
- DOI: https://doi.org/10.1090/S0025-5718-2010-02396-8
- Published electronically: June 4, 2010
- PDF | Request permission
Abstract:
Let $x$ be a complex random variable with mean zero and bounded variance. Let $N_{n}$ be the random matrix of size $n$ whose entries are iid copies of $x$ and let $M$ be a fixed matrix of the same size. The goal of this paper is to give a general estimate for the condition number and least singular value of the matrix $M + N_{n}$, generalizing an earlier result of Spielman and Teng for the case when $x$ is gaussian.
Our investigation reveals an interesting fact that the “core” matrix $M$ does play a role on tail bounds for the least singular value of $M+N_{n}$. This does not occur in Spielman-Teng studies when ${x}$ is gaussian. Consequently, our general estimate involves the norm $\|M\|$. In the special case when $\|M\|$ is relatively small, this estimate is nearly optimal and extends or refines existing results.
References
- Zhidong Bai and Jack W. Silverstein, Spectral analysis of large dimensional random matrices, 2nd ed., Springer Series in Statistics, Springer, New York, 2010. MR 2567175, DOI 10.1007/978-1-4419-0661-8
- Lloyd N. Trefethen and David Bau III, Numerical linear algebra, Society for Industrial and Applied Mathematics (SIAM), Philadelphia, PA, 1997. MR 1444820, DOI 10.1137/1.9780898719574
- Peter Bürgisser, Felipe Cucker, and Martin Lotz, The probability that a slightly perturbed numerical analysis problem is difficult, Math. Comp. 77 (2008), no. 263, 1559–1583. MR 2398780, DOI 10.1090/S0025-5718-08-02060-7
- Peter Bürgisser, Felipe Cucker, and Martin Lotz, General formulas for the smoothed analysis of condition numbers, C. R. Math. Acad. Sci. Paris 343 (2006), no. 2, 145–150 (English, with English and French summaries). MR 2243310, DOI 10.1016/j.crma.2006.05.014
- Peter Bürgisser, Felipe Cucker, and Martin Lotz, Smoothed analysis of complex conic condition numbers, J. Math. Pures Appl. (9) 86 (2006), no. 4, 293–309 (English, with English and French summaries). MR 2257845, DOI 10.1016/j.matpur.2006.06.001
- Alan Edelman, Eigenvalues and condition numbers of random matrices, SIAM J. Matrix Anal. Appl. 9 (1988), no. 4, 543–560. MR 964668, DOI 10.1137/0609045
- P. Erdös, On a lemma of Littlewood and Offord, Bull. Amer. Math. Soc. 51 (1945), 898–902. MR 14608, DOI 10.1090/S0002-9904-1945-08454-7
- James W. Demmel, The probability that a numerical analysis problem is difficult, Math. Comp. 50 (1988), no. 182, 449–480. MR 929546, DOI 10.1090/S0025-5718-1988-0929546-7
- J. Dunagan, D. A. Spielman and S. H. Teng, Smoothed Analysis of the Renegar’s Condition Number for Linear Programming, preprint.
- Gene H. Golub and Charles F. Van Loan, Matrix computations, 3rd ed., Johns Hopkins Studies in the Mathematical Sciences, Johns Hopkins University Press, Baltimore, MD, 1996. MR 1417720
- Z. Füredi and J. Komlós, The eigenvalues of random symmetric matrices, Combinatorica 1 (1981), no. 3, 233–241. MR 637828, DOI 10.1007/BF02579329
- Eric Kostlan, Complexity theory of numerical linear algebra, J. Comput. Appl. Math. 22 (1988), no. 2-3, 219–230. Special issue on emerging paradigms in applied mathematical modelling. MR 956504, DOI 10.1016/0377-0427(88)90402-5
- J. Komlós, On the determinant of $(0,\,1)$ matrices, Studia Sci. Math. Hungar. 2 (1967), 7–21. MR 221962
- RafałLatała, Some estimates of norms of random matrices, Proc. Amer. Math. Soc. 133 (2005), no. 5, 1273–1282. MR 2111932, DOI 10.1090/S0002-9939-04-07800-1
- A. E. Litvak, A. Pajor, M. Rudelson, and N. Tomczak-Jaegermann, Smallest singular value of random matrices and geometry of random polytopes, Adv. Math. 195 (2005), no. 2, 491–523. MR 2146352, DOI 10.1016/j.aim.2004.08.004
- M. L. Mehta, Random matrices and the statistical theory of energy levels, Academic Press, New York-London, 1967. MR 220494
- L. A. Pastur, The spectrum of random matrices, Teoret. Mat. Fiz. 10 (1972), no. 1, 102–112 (Russian, with English summary). MR 475502
- J. Renegar, On the efficiency of Newton’s method in approximating all zeros of a system of complex polynomials, Math. Oper. Res. 12 (1987), no. 1, 121–148. MR 882846, DOI 10.1287/moor.12.1.121
- Mark Rudelson, Invertibility of random matrices: norm of the inverse, Ann. of Math. (2) 168 (2008), no. 2, 575–600. MR 2434885, DOI 10.4007/annals.2008.168.575
- Mark Rudelson and Roman Vershynin, The Littlewood-Offord problem and invertibility of random matrices, Adv. Math. 218 (2008), no. 2, 600–633. MR 2407948, DOI 10.1016/j.aim.2008.01.010
- Steve Smale, On the efficiency of algorithms of analysis, Bull. Amer. Math. Soc. (N.S.) 13 (1985), no. 2, 87–121. MR 799791, DOI 10.1090/S0273-0979-1985-15391-1
- Yoav Seginer, The expected norm of random matrices, Combin. Probab. Comput. 9 (2000), no. 2, 149–166. MR 1762786, DOI 10.1017/S096354830000420X
- Daniel A. Spielman and Shang-Hua Teng, Smoothed analysis of algorithms, Proceedings of the International Congress of Mathematicians, Vol. I (Beijing, 2002) Higher Ed. Press, Beijing, 2002, pp. 597–606. MR 1989210
- Daniel A. Spielman and Shang-Hua Teng, Smoothed analysis of algorithms: why the simplex algorithm usually takes polynomial time, J. ACM 51 (2004), no. 3, 385–463. MR 2145860, DOI 10.1145/990308.990310
- Arvind Sankar, Daniel A. Spielman, and Shang-Hua Teng, Smoothed analysis of the condition numbers and growth factors of matrices, SIAM J. Matrix Anal. Appl. 28 (2006), no. 2, 446–476. MR 2255338, DOI 10.1137/S0895479803436202
- Terence Tao and Van H. Vu, Inverse Littlewood-Offord theorems and the condition number of random discrete matrices, Ann. of Math. (2) 169 (2009), no. 2, 595–632. MR 2480613, DOI 10.4007/annals.2009.169.595
- Terence Tao and Van Vu, The condition number of a randomly perturbed matrix, STOC’07—Proceedings of the 39th Annual ACM Symposium on Theory of Computing, ACM, New York, 2007, pp. 248–255. MR 2402448, DOI 10.1145/1250790.1250828
- Terence Tao and Van Vu, Random matrices: the circular law, Commun. Contemp. Math. 10 (2008), no. 2, 261–307. MR 2409368, DOI 10.1142/S0219199708002788
- Terence Tao and Van Vu, Additive combinatorics, Cambridge Studies in Advanced Mathematics, vol. 105, Cambridge University Press, Cambridge, 2006. MR 2289012, DOI 10.1017/CBO9780511755149
- John von Neumann and H. H. Goldstine, Numerical inverting of matrices of high order, Bull. Amer. Math. Soc. 53 (1947), 1021–1099. MR 24235, DOI 10.1090/S0002-9904-1947-08909-6
- Van H. Vu, Spectral norm of random matrices, Combinatorica 27 (2007), no. 6, 721–736. MR 2384414, DOI 10.1007/s00493-007-2190-z
- Eugene P. Wigner, On the distribution of the roots of certain symmetric matrices, Ann. of Math. (2) 67 (1958), 325–327. MR 95527, DOI 10.2307/1970008
Bibliographic Information
- Terence Tao
- Affiliation: Department of Mathematics, UCLA, Los Angeles, California 90095-1555
- MR Author ID: 361755
- ORCID: 0000-0002-0140-7641
- Email: tao@math.ucla.edu
- Van Vu
- Affiliation: Department of Mathematics, Rutgers University, Piscataway, New Jersey 08854
- Email: vanvu@math.rutgers.edu
- Received by editor(s): March 10, 2009
- Published electronically: June 4, 2010
- Additional Notes: The first author was supported by a grant from the MacArthur Foundation.
The second author was supported by research grants DMS-0901216 and AFOSAR-FA-9550-09-1-0167. - © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 79 (2010), 2333-2352
- MSC (2010): Primary 11B25
- DOI: https://doi.org/10.1090/S0025-5718-2010-02396-8
- MathSciNet review: 2684367