On the Poincaré-Friedrichs inequality for piecewise $H^1$ functions in anisotropic discontinuous Galerkin finite element methods
HTML articles powered by AMS MathViewer
- by Huo-Yuan Duan and Roger C. E. Tan;
- Math. Comp. 80 (2011), 119-140
- DOI: https://doi.org/10.1090/S0025-5718-2010-02296-3
- Published electronically: July 8, 2010
- PDF | Request permission
Abstract:
The purpose of this paper is to propose a proof for the Poincaré-Friedrichs inequality for piecewise $H^1$ functions on anisotropic meshes. By verifying suitable assumptions involved in the newly proposed proof, we show that the Poincaré-Friedrichs inequality for piecewise $H^1$ functions holds independently of the aspect ratio which characterizes the shape-regular condition in finite element analysis. In addition, under the maximum angle condition, we establish the Poincaré-Friedrichs inequality for the Crouzeix-Raviart nonconforming linear finite element. Counterexamples show that the maximum angle condition is only sufficient.References
- Gabriel Acosta, Lagrange and average interpolation over 3D anisotropic elements, J. Comput. Appl. Math. 135 (2001), no. 1, 91–109. MR 1854446, DOI 10.1016/S0377-0427(00)00564-1
- Gabriel Acosta and Gabriel Monzón, Interpolation error estimates in $W^{1,p}$ for degenerate $Q_1$ isoparametric elements, Numer. Math. 104 (2006), no. 2, 129–150. MR 2242611, DOI 10.1007/s00211-006-0018-1
- Gabriel Acosta and Ricardo G. Durán, The maximum angle condition for mixed and nonconforming elements: application to the Stokes equations, SIAM J. Numer. Anal. 37 (1999), no. 1, 18–36. MR 1721268, DOI 10.1137/S0036142997331293
- Gabriel Acosta and Ricardo G. Durán, Error estimates for ${\scr Q}_1$ isoparametric elements satisfying a weak angle condition, SIAM J. Numer. Anal. 38 (2000), no. 4, 1073–1088. MR 1786131, DOI 10.1137/S0036142999359104
- Thomas Apel, Anisotropic finite elements: local estimates and applications, Advances in Numerical Mathematics, B. G. Teubner, Stuttgart, 1999. MR 1716824
- Douglas N. Arnold, An interior penalty finite element method with discontinuous elements, SIAM J. Numer. Anal. 19 (1982), no. 4, 742–760. MR 664882, DOI 10.1137/0719052
- Douglas N. Arnold and Richard S. Falk, A uniformly accurate finite element method for the Reissner-Mindlin plate, SIAM J. Numer. Anal. 26 (1989), no. 6, 1276–1290. MR 1025088, DOI 10.1137/0726074
- Douglas N. Arnold, Franco Brezzi, Bernardo Cockburn, and L. Donatella Marini, Unified analysis of discontinuous Galerkin methods for elliptic problems, SIAM J. Numer. Anal. 39 (2001/02), no. 5, 1749–1779. MR 1885715, DOI 10.1137/S0036142901384162
- I. Babuška and A. K. Aziz, On the angle condition in the finite element method, SIAM J. Numer. Anal. 13 (1976), no. 2, 214–226. MR 455462, DOI 10.1137/0713021
- Catherine Bandle, Isoperimetric inequalities and applications, Monographs and Studies in Mathematics, vol. 7, Pitman (Advanced Publishing Program), Boston, Mass.-London, 1980. MR 572958
- M. Bebendorf, A note on the Poincaré inequality for convex domains, Z. Anal. Anwendungen 22 (2003), no. 4, 751–756. MR 2036927, DOI 10.4171/ZAA/1170
- Mario Bebendorf and Wolfgang Hackbusch, Existence of $\scr H$-matrix approximants to the inverse FE-matrix of elliptic operators with $L^\infty$-coefficients, Numer. Math. 95 (2003), no. 1, 1–28. MR 1993936, DOI 10.1007/s00211-002-0445-6
- Faker Ben Belgacem, The mortar finite element method with Lagrange multipliers, Numer. Math. 84 (1999), no. 2, 173–197. MR 1730018, DOI 10.1007/s002110050468
- Jan Brandts, Sergey Korotov, and Michal Křížek, On the equivalence of regularity criteria for triangular and tetrahedral finite element partitions, Comput. Math. Appl. 55 (2008), no. 10, 2227–2233. MR 2413688, DOI 10.1016/j.camwa.2007.11.010
- Susanne C. Brenner, Poincaré-Friedrichs inequalities for piecewise $H^1$ functions, SIAM J. Numer. Anal. 41 (2003), no. 1, 306–324. MR 1974504, DOI 10.1137/S0036142902401311
- Susanne C. Brenner, Korn’s inequalities for piecewise $H^1$ vector fields, Math. Comp. 73 (2004), no. 247, 1067–1087. MR 2047078, DOI 10.1090/S0025-5718-03-01579-5
- F. Brezzi, B. Cockburn, L. D. Marini, and E. Süli, Stabilization mechanisms in discontinuous Galerkin finite element methods, Comput. Methods Appl. Mech. Engrg. 195 (2006), no. 25-28, 3293–3310. MR 2220920, DOI 10.1016/j.cma.2005.06.015
- Philippe G. Ciarlet, The finite element method for elliptic problems, Studies in Mathematics and its Applications, Vol. 4, North-Holland Publishing Co., Amsterdam-New York-Oxford, 1978. MR 520174
- Bernardo Cockburn and Chi-Wang Shu, The local discontinuous Galerkin method for time-dependent convection-diffusion systems, SIAM J. Numer. Anal. 35 (1998), no. 6, 2440–2463. MR 1655854, DOI 10.1137/S0036142997316712
- Bernardo Cockburn, George E. Karniadakis, and Chi-Wang Shu (eds.), Discontinuous Galerkin methods, Lecture Notes in Computational Science and Engineering, vol. 11, Springer-Verlag, Berlin, 2000. Theory, computation and applications; Papers from the 1st International Symposium held in Newport, RI, May 24–26, 1999. MR 1842160, DOI 10.1007/978-3-642-59721-3
- M. Crouzeix and P.-A. Raviart, Conforming and nonconforming finite element methods for solving the stationary Stokes equations. I, Rev. Française Automat. Informat. Recherche Opérationnelle Sér. Rouge 7 (1973), no. R-3, 33–75. MR 343661
- Ricardo G. Durán and Ariel L. Lombardi, Error estimates on anisotropic $\scr Q_1$ elements for functions in weighted Sobolev spaces, Math. Comp. 74 (2005), no. 252, 1679–1706. MR 2164092, DOI 10.1090/S0025-5718-05-01732-1
- Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR 851383, DOI 10.1007/978-3-642-61623-5
- P. Grisvard, Elliptic problems in nonsmooth domains, Monographs and Studies in Mathematics, vol. 24, Pitman (Advanced Publishing Program), Boston, MA, 1985. MR 775683
- Olga A. Ladyzhenskaya and Nina N. Ural’tseva, Linear and quasilinear elliptic equations, Academic Press, New York-London, 1968. Translated from the Russian by Scripta Technica, Inc; Translation editor: Leon Ehrenpreis. MR 244627
- Yingjie Liu, Chi-Wang Shu, Eitan Tadmor, and Mengping Zhang, Central discontinuous Galerkin methods on overlapping cells with a nonoscillatory hierarchical reconstruction, SIAM J. Numer. Anal. 45 (2007), no. 6, 2442–2467. MR 2361897, DOI 10.1137/060666974
- Michal Křížek, On the maximum angle condition for linear tetrahedral elements, SIAM J. Numer. Anal. 29 (1992), no. 2, 513–520. MR 1154279, DOI 10.1137/0729031
- L. E. Payne, Isoperimetric inequalities and their applications, SIAM Rev. 9 (1967), 453–488. MR 218975, DOI 10.1137/1009070
- P. G. Ciarlet and J.-L. Lions (eds.), Handbook of numerical analysis. Vol. II, Handbook of Numerical Analysis, II, North-Holland, Amsterdam, 1991. Finite element methods. Part 1. MR 1115235
- Rüdiger Verfürth, A note on polynomial approximation in Sobolev spaces, M2AN Math. Model. Numer. Anal. 33 (1999), no. 4, 715–719 (English, with English and French summaries). MR 1726481, DOI 10.1051/m2an:1999159
- Barbara I. Wohlmuth, Discretization methods and iterative solvers based on domain decomposition, Lecture Notes in Computational Science and Engineering, vol. 17, Springer-Verlag, Berlin, 2001. MR 1820470, DOI 10.1007/978-3-642-56767-4
Bibliographic Information
- Huo-Yuan Duan
- Affiliation: School of Mathematical Sciences, Nankai University, 94 Weijin Street, Nankai District, Tianjin 300071, People’s Republic of China
- Email: hyduan@nankai.edu.cn
- Roger C. E. Tan
- Affiliation: Department of Mathematics, National University of Singapore, 2 Science Drive 2, Singapore 117543
- Email: scitance@nus.edu.sg
- Received by editor(s): June 8, 2007
- Received by editor(s) in revised form: August 12, 2008
- Published electronically: July 8, 2010
- Additional Notes: The authors were supported by the NUS academic research grant R-146-000-064-112.
- © Copyright 2010 American Mathematical Society
- Journal: Math. Comp. 80 (2011), 119-140
- MSC (2000): Primary 26D10, 46E35, 65M60, 65N30
- DOI: https://doi.org/10.1090/S0025-5718-2010-02296-3
- MathSciNet review: 2728974