Torsion units in integral group rings of Janko simple groups
HTML articles powered by AMS MathViewer
- by V. A. Bovdi, E. Jespers and A. B. Konovalov;
- Math. Comp. 80 (2011), 593-615
- DOI: https://doi.org/10.1090/S0025-5718-2010-02376-2
- Published electronically: June 9, 2010
- PDF | Request permission
Abstract:
Using the Luthar–Passi method, we investigate the classical Zassenhaus conjecture for the normalized unit group of integral group rings of Janko sporadic simple groups. As a consequence, we obtain that the Gruenberg-Kegel graph of the Janko groups $J_1$, $J_2$ and $J_3$ is the same as that of the normalized unit group of their respective integral group ring.References
- V. A. Artamonov and A. A. Bovdi, Integral group rings: groups of invertible elements and classical $K$-theory, Algebra. Topology. Geometry, Vol. 27 (Russian), Itogi Nauki i Tekhniki, Akad. Nauk SSSR, Vsesoyuz. Inst. Nauchn. i Tekhn. Inform., Moscow, 1989, pp. 3–43, 232 (Russian). Translated in J. Soviet Math. 57 (1991), no. 2, 2931–2958. MR 1039822
- V. Bovdi, A. Grishkov, and A. Konovalov, Kimmerle conjecture for the Held and O’Nan sporadic simple groups, Sci. Math. Jpn. 69 (2009), no. 3, 353–361. MR 2510100
- Victor Bovdi and Martin Hertweck, Zassenhaus conjecture for central extensions of $S_5$, J. Group Theory 11 (2008), no. 1, 63–74. MR 2381018, DOI 10.1515/JGT.2008.004
- Victor Bovdi and Alexander Konovalov, Integral group ring of the first Mathieu simple group, Groups St. Andrews 2005. Vol. 1, London Math. Soc. Lecture Note Ser., vol. 339, Cambridge Univ. Press, Cambridge, 2007, pp. 237–245. MR 2328163, DOI 10.1017/CBO9780511721212.016
- V. A. Bovdi and A. B. Konovalov, Integral group ring of the McLaughlin simple group, Algebra Discrete Math. 2 (2007), 43–53. MR 2364062
- V. A. Bovdi and A. B. Konovalov, Integral group ring of the Mathieu simple group $M_{23}$, Comm. Algebra 36 (2008), no. 7, 2670–2680. MR 2422512, DOI 10.1080/00927870802068045
- —, Torsion units in integral group ring of Higman-Sims simple group, Studia Sci. Math. Hungar. (to appear, 2009).
- V. A. Bovdi, A. B. Konovalov, and S. Linton, Torsion units in integral group ring of the Mathieu simple group $\textrm {M}_{22}$, LMS J. Comput. Math. 11 (2008), 28–39. MR 2379938, DOI 10.1112/S1461157000000516
- Victor A. Bovdi, Alexander B. Konovalov, and Eduardo do Nascimento Marcos, Integral group ring of the Suzuki sporadic simple group, Publ. Math. Debrecen 72 (2008), no. 3-4, 487–503. MR 2406705, DOI 10.5486/pmd.2008.4115
- V. Bovdi, A. Konovalov, R. Rossmanith, and Cs. Schneider, LAGUNA—Lie AlGebras and UNits of group Algebras, Version 3.5.0, 2009, (http://www.cs.st-andrews.ac.uk/~alexk/laguna.htm).
- V. A. Bovdi, A. B. Konovalov, and S. Siciliano, Integral group ring of the Mathieu simple group $M_{12}$, Rend. Circ. Mat. Palermo (2) 56 (2007), no. 1, 125–136. MR 2313777, DOI 10.1007/BF03031434
- James A. Cohn and Donald Livingstone, On the structure of group algebras. I, Canadian J. Math. 17 (1965), 583–593. MR 179266, DOI 10.4153/CJM-1965-058-2
- J. H. Conway, R. T. Curtis, S. P. Norton, R. A. Parker, and R. A. Wilson, $\Bbb {ATLAS}$ of finite groups, Oxford University Press, Eynsham, 1985. Maximal subgroups and ordinary characters for simple groups; With computational assistance from J. G. Thackray. MR 827219
- ECLiPSe Constraint Programming System, Ver. 5.10, (http://www.eclipse-clp.org), 2006.
- GAP—Groups, Algorithms, and Programming, Version 4.4.12, (http://www.gap-system.org), 2008.
- I. P. Gent, C. Jefferson, and I. Miguel, Minion: A fast scalable constraint solver, ECAI 2006, 17th European Conference on Artificial Intelligence, August 29 - September 1, 2006, Riva del Garda, Italy, Including Prestigious Applications of Intelligent Systems (PAIS 2006), Proceedings, IOS Press, 2006, pp. 98–102.
- Martin Hertweck, On the torsion units of some integral group rings, Algebra Colloq. 13 (2006), no. 2, 329–348. MR 2208368, DOI 10.1142/S1005386706000290
- Martin Hertweck, The orders of torsion units in integral group rings of finite solvable groups, Comm. Algebra 36 (2008), no. 10, 3585–3588. MR 2458394, DOI 10.1080/00927870802157632
- Martin Hertweck, Torsion units in integral group rings of certain metabelian groups, Proc. Edinb. Math. Soc. (2) 51 (2008), no. 2, 363–385. MR 2465913, DOI 10.1017/S0013091505000039
- —, Partial augmentations and Brauer character values of torsion units in group rings, Comm. Algebra (to appear, 2007), 1–16, (E-print arXiv:math.RA/0612429v2).
- Christoph Jansen, Klaus Lux, Richard Parker, and Robert Wilson, An atlas of Brauer characters, London Mathematical Society Monographs. New Series, vol. 11, The Clarendon Press, Oxford University Press, New York, 1995. Appendix 2 by T. Breuer and S. Norton; Oxford Science Publications. MR 1367961
- W. Kimmerle, On the prime graph of the unit group of integral group rings of finite groups, Groups, rings and algebras, Contemp. Math., vol. 420, Amer. Math. Soc., Providence, RI, 2006, pp. 215–228. MR 2279241, DOI 10.1090/conm/420/07977
- I. S. Luthar and I. B. S. Passi, Zassenhaus conjecture for $A_5$, Proc. Indian Acad. Sci. Math. Sci. 99 (1989), no. 1, 1–5. MR 1004634, DOI 10.1007/BF02874643
- Mini-Workshop: Arithmetik von Gruppenringen, Oberwolfach Rep. 4 (2007), no. 4, 3209–3239. Abstracts from the mini-workshop held November 25–December 1, 2007; Organized by Eric Jespers, Zbigniew Marciniak, Gabriele Nebe and Wolfgang Kimmerle; Oberwolfach Reports. Vol. 4, no. 4. MR 2463649, DOI 10.4171/OWR/2007/55
- Hans Zassenhaus, On the torsion units of finite group rings, Studies in mathematics (in honor of A. Almeida Costa) (Portuguese), Inst. Alta Cultura, Lisbon, 1974, pp. 119–126. MR 376747
Bibliographic Information
- V. A. Bovdi
- Affiliation: Institute of Mathematics, University of Debrecen, P.O. Box 12, H-4010 Debrecen, Hungary
- Email: vbovdi@math.unideb.hu
- E. Jespers
- Affiliation: Department of Mathematics, Vrije Universiteit Brussel, Pleinlaan 2, B-1050 Brussel, Belgium
- MR Author ID: 94560
- Email: efjesper@vub.ac.be
- A. B. Konovalov
- Affiliation: School of Computer Science, University of St Andrews, Jack Cole Building, North Haugh, St Andrews, Fife, KY16 9SX, Scotland
- Email: alexk@mcs.st-andrews.ac.uk
- Received by editor(s): April 27, 2007
- Received by editor(s) in revised form: September 7, 2009
- Published electronically: June 9, 2010
- Additional Notes: The research was supported by OTKA No. K68383, Onderzoeksraad of Vrije Universiteit Brussel, Fonds voor Wetenschappelijk Onderzoek (Belgium), Flemish-Polish bilateral agreement BIL2005/VUB/2006, Francqui Stichting (Belgium) grant ADSI107 and The Royal Society of Edinburgh International Exchange Programme
- © Copyright 2010 American Mathematical Society
- Journal: Math. Comp. 80 (2011), 593-615
- MSC (2010): Primary 16S34, 20C05; Secondary 20D08
- DOI: https://doi.org/10.1090/S0025-5718-2010-02376-2
- MathSciNet review: 2728996
Dedicated: Dedicated to the memory of Professor I. S. Luthar