Efficient and reliable hierarchical error estimates for the discretization error of elliptic obstacle problems
HTML articles powered by AMS MathViewer
- by Ralf Kornhuber and Qingsong Zou;
- Math. Comp. 80 (2011), 69-88
- DOI: https://doi.org/10.1090/S0025-5718-2010-02394-4
- Published electronically: June 23, 2010
- PDF | Request permission
Abstract:
We present and analyze novel hierarchical a posteriori error estimates for self-adjoint elliptic obstacle problems. Our approach differs from straightforward, but nonreliable estimators by an additional extra term accounting for the deviation of the discrete free boundary in the localization step. We prove efficiency and reliability on a saturation assumption and a regularity condition on the underlying grid. Heuristic arguments suggest that the extra term is of higher order and preserves full locality. Numerical computations confirm our theoretical findings.References
- Mark Ainsworth and J. Tinsley Oden, A posteriori error estimation in finite element analysis, Pure and Applied Mathematics (New York), Wiley-Interscience [John Wiley & Sons], New York, 2000. MR 1885308, DOI 10.1002/9781118032824
- R. E. Bank and A. Weiser, Some a posteriori error estimators for elliptic partial differential equations, Math. Comp. 44 (1985), no. 170, 283–301. MR 777265, DOI 10.1090/S0025-5718-1985-0777265-X
- S. Bartels and C. Carstensen, Averaging techniques yield reliable a posteriori finite element error control for obstacle problems, Numer. Math. 99 (2004), no. 2, 225–249. MR 2107431, DOI 10.1007/s00211-004-0553-6
- Folkmar A. Bornemann, Bodo Erdmann, and Ralf Kornhuber, A posteriori error estimates for elliptic problems in two and three space dimensions, SIAM J. Numer. Anal. 33 (1996), no. 3, 1188–1204. MR 1393909, DOI 10.1137/0733059
- Dietrich Braess, Ronald H. W. Hoppe, and Joachim Schöberl, A posteriori estimators for obstacle problems by the hypercircle method, Comput. Vis. Sci. 11 (2008), no. 4-6, 351–362. MR 2425501, DOI 10.1007/s00791-008-0104-2
- Franco Brezzi, William W. Hager, and P.-A. Raviart, Error estimates for the finite element solution of variational inequalities, Numer. Math. 28 (1977), no. 4, 431–443. MR 448949, DOI 10.1007/BF01404345
- Zhiming Chen and Ricardo H. Nochetto, Residual type a posteriori error estimates for elliptic obstacle problems, Numer. Math. 84 (2000), no. 4, 527–548. MR 1742264, DOI 10.1007/s002110050009
- Philippe G. Ciarlet, Metod konechnykh èlementov dlya èllipticheskikh zadach, “Mir”, Moscow, 1980 (Russian). Translated from the English by B. I. Kvasov. MR 608971
- B. Delaunay. Sur la sphère vide. Bull. Acad. Sci. URSS, 7:793–800, 1934.
- P. Deuflhard, P. Leinen, and H. Yserentant. Concepts of an adaptive hierarchical finite element code. IMPACT Comput. Sci. Engrg., 1:3–35, 1989.
- Willy Dörfler, A convergent adaptive algorithm for Poisson’s equation, SIAM J. Numer. Anal. 33 (1996), no. 3, 1106–1124. MR 1393904, DOI 10.1137/0733054
- Willy Dörfler and Ricardo H. Nochetto, Small data oscillation implies the saturation assumption, Numer. Math. 91 (2002), no. 1, 1–12. MR 1896084, DOI 10.1007/s002110100321
- C. Gräser, R. Kornhuber, and U. Sack. On hierarchical error estimators for time-discretized phase field models. To appear in the Proceedings of ENUMATH 2009.
- R. H. W. Hoppe and R. Kornhuber, Adaptive multilevel methods for obstacle problems, SIAM J. Numer. Anal. 31 (1994), no. 2, 301–323. MR 1276702, DOI 10.1137/0731016
- David Kinderlehrer and Guido Stampacchia, An introduction to variational inequalities and their applications, Pure and Applied Mathematics, vol. 88, Academic Press, Inc. [Harcourt Brace Jovanovich, Publishers], New York-London, 1980. MR 567696
- R. Kornhuber, A posteriori error estimates for elliptic variational inequalities, Comput. Math. Appl. 31 (1996), no. 8, 49–60. MR 1385549, DOI 10.1016/0898-1221(96)00030-2
- Ralf Kornhuber, Adaptive monotone multigrid methods for nonlinear variational problems, Advances in Numerical Mathematics, B. G. Teubner, Stuttgart, 1997. MR 1469497
- S. Korotov and M. Křížek, Global and local refinement techniques yielding nonobtuse tetrahedral partitions, Comput. Math. Appl. 50 (2005), no. 7, 1105–1113. MR 2167747, DOI 10.1016/j.camwa.2005.08.012
- Sergey Korotov, Michal Křížek, and Pekka Neittaanmäki, Weakened acute type condition for tetrahedral triangulations and the discrete maximum principle, Math. Comp. 70 (2001), no. 233, 107–119. MR 1803125, DOI 10.1090/S0025-5718-00-01270-9
- Wenbin Liu and Ningning Yan, A posteriori error estimators for a class of variational inequalities, J. Sci. Comput. 15 (2000), no. 3, 361–393. MR 1828748, DOI 10.1023/A:1011130501691
- Ricardo H. Nochetto, Kunibert G. Siebert, and Andreas Veeser, Pointwise a posteriori error control for elliptic obstacle problems, Numer. Math. 95 (2003), no. 1, 163–195. MR 1993943, DOI 10.1007/s00211-002-0411-3
- Ricardo H. Nochetto, Kunibert G. Siebert, and Andreas Veeser, Fully localized a posteriori error estimators and barrier sets for contact problems, SIAM J. Numer. Anal. 42 (2005), no. 5, 2118–2135. MR 2139239, DOI 10.1137/S0036142903424404
- O. Sander. Multi-dimensional Coupling in a Human Knee Model. Ph.D. thesis, FU Berlin, 2008.
- Kunibert G. Siebert and Andreas Veeser, A unilaterally constrained quadratic minimization with adaptive finite elements, SIAM J. Optim. 18 (2007), no. 1, 260–289. MR 2299684, DOI 10.1137/05064597X
- Andreas Veeser, Efficient and reliable a posteriori error estimators for elliptic obstacle problems, SIAM J. Numer. Anal. 39 (2001), no. 1, 146–167. MR 1860720, DOI 10.1137/S0036142900370812
- R. Verfürth. A Review of A Posteriori Error Estimation and Adaptive Mesh-Refinement Techniques. Wiley and Teubner, 1996.
- J. Xu. Theory of multilevel methods. Technical Report AM 48, Pennsylvania State University, Department of Mathematics, University Park, USA, 1989.
- Jinchao Xu, Iterative methods by space decomposition and subspace correction, SIAM Rev. 34 (1992), no. 4, 581–613. MR 1193013, DOI 10.1137/1034116
- Jinchao Xu and Ludmil Zikatanov, A monotone finite element scheme for convection-diffusion equations, Math. Comp. 68 (1999), no. 228, 1429–1446. MR 1654022, DOI 10.1090/S0025-5718-99-01148-5
- Harry Yserentant, On the multilevel splitting of finite element spaces, Numer. Math. 49 (1986), no. 4, 379–412. MR 853662, DOI 10.1007/BF01389538
- Harry Yserentant, Two preconditioners based on the multi-level splitting of finite element spaces, Numer. Math. 58 (1990), no. 2, 163–184. MR 1069277, DOI 10.1007/BF01385617
- O.C. Zienkiewicz, J.P. de S.R. Gago, and D.W. Kelly. The hierarchical concept in finite element analysis. Computers & Structures, 16:53–65, 1983.
- Q. Zou, A. Veeser, R. Kornhuber, and C. Gräser. Hierarchical error estimates for the energy functional in obstacle problems. Technical Report 575, Matheon, 2009.
Bibliographic Information
- Ralf Kornhuber
- Affiliation: Freie Universität Berlin, Institut für Mathematik, Arnimallee 6, D-14195 Berlin, Germany
- Email: kornhuber@math.fu-berlin.de
- Qingsong Zou
- Affiliation: University Guangzhou, Department of Scientific Computation and Computer Applications, Guangzhou, 510275, People’s Republic of China
- Email: mcszqs@mail.sysu.edu.cn
- Received by editor(s): September 17, 2008
- Received by editor(s) in revised form: June 22, 2009
- Published electronically: June 23, 2010
- Additional Notes: The authors gratefully acknowledge substantial support by Carsten Gräser and Oliver Sander through fruitful discussions and numerical assistance. The second author is supported in part by NSFC under the grant 10601070 and in part by Alexander von Humboldt Foundation hosted by Freie Universität in Berlin.
- © Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication. - Journal: Math. Comp. 80 (2011), 69-88
- MSC (2010): Primary 65N15, 65N30
- DOI: https://doi.org/10.1090/S0025-5718-2010-02394-4
- MathSciNet review: 2728972