Nonsymmetric coupling of BEM and mixed FEM on polyhedral interfaces
Authors:
Salim Meddahi, Francisco-Javier Sayas and Virginia Selgás
Journal:
Math. Comp. 80 (2011), 43-68
MSC (2010):
Primary 65N30
DOI:
https://doi.org/10.1090/S0025-5718-2010-02401-9
Published electronically:
August 17, 2010
MathSciNet review:
2728971
Full-text PDF Free Access
Abstract | References | Similar Articles | Additional Information
Abstract: In this paper we propose and analyze some new methods for coupling mixed finite element and boundary element methods for the model problem of the Laplace equation in free space or in the exterior of a bounded domain. As opposed to the existing methods, which use the complete matrix of operators of the Calderón projector to obtain a symmetric coupled system, we propose methods with only one integral equation. The system can be considered as a further generalization of the Johnson-Nédélec coupling of BEM-FEM to the case of mixed formulations in the bounded domain. Using some recent analytical tools we are able to prove stability and convergence of Galerkin methods with very general conditions on the discrete spaces and no restriction relating the finite and boundary element spaces. This can be done for general Lipschitz interfaces and in particular, the coupling boundary can be taken to be a Lipschitz polyhedron. Both the indirect and the direct approaches for the boundary integral formulation are explored.
- 1. Robert A. Adams, Sobolev spaces, Academic Press [A subsidiary of Harcourt Brace Jovanovich, Publishers], New York-London, 1975. Pure and Applied Mathematics, Vol. 65. MR 0450957
- 2. J. Bielak and R. C. MacCamy, Symmetric finite element and boundary integral coupling methods for fluid-solid interaction, Quart. Appl. Math. 49 (1991), no. 1, 107–119. MR 1096235, https://doi.org/10.1090/qam/1096235
- 3. Franco Brezzi and Michel Fortin, Mixed and hybrid finite element methods, Springer Series in Computational Mathematics, vol. 15, Springer-Verlag, New York, 1991. MR 1115205
- 4. F. Brezzi, C. Johnson, and J.-C. Nédélec, On the coupling of boundary integral and finite element methods, Proceedings of the Fourth Symposium on Basic Problems of Numerical Mathematics (Plzeň, 1978) Charles Univ., Prague, 1978, pp. 103–114. MR 566158
- 5. F. Brezzi, C. Johnson, and J.-C. Nédélec, On the coupling of boundary integral and finite element methods, Proceedings of the Fourth Symposium on Basic Problems of Numerical Mathematics (Plzeň, 1978) Charles Univ., Prague, 1978, pp. 103–114. MR 566158
- 6. Carsten Carstensen and Stefan A. Funken, Coupling of mixed finite elements and boundary elements, IMA J. Numer. Anal. 20 (2000), no. 3, 461–480. MR 1773269, https://doi.org/10.1093/imanum/20.3.461
- 7. C. Carstensen and S. A. Funken, Coupling of nonconforming finite elements and boundary elements. I. A priori estimates, Computing 62 (1999), no. 3, 229–241. MR 1697839, https://doi.org/10.1007/s607-1999-8334-7
- 8. B. Cockburn, F.-J. Sayas. Symmetric coupling of boundary element and discontinuous Galerkin methods: algorithms and examples. Submitted.
- 9. M. Costabel, Symmetric methods for the coupling of finite elements and boundary elements (invited contribution), Boundary elements IX, Vol. 1 (Stuttgart, 1987) Comput. Mech., Southampton, 1987, pp. 411–420. MR 965328, https://doi.org/10.1007/978-3-662-21908-9_26
- 10. Martin Costabel, Boundary integral operators on Lipschitz domains: elementary results, SIAM J. Math. Anal. 19 (1988), no. 3, 613–626. MR 937473, https://doi.org/10.1137/0519043
- 11. Víctor Domínguez and Francisco-Javier Sayas, Stability of discrete liftings, C. R. Math. Acad. Sci. Paris 337 (2003), no. 12, 805–808 (English, with English and French summaries). MR 2033124, https://doi.org/10.1016/j.crma.2003.10.025
- 12. Stefan Erichsen and Stefan A. Sauter, Efficient automatic quadrature in 3-d Galerkin BEM, Comput. Methods Appl. Mech. Engrg. 157 (1998), no. 3-4, 215–224. Seventh Conference on Numerical Methods and Computational Mechanics in Science and Engineering (NMCM 96) (Miskolc). MR 1634288, https://doi.org/10.1016/S0045-7825(97)00236-3
- 13. Gabriel N. Gatica and George C. Hsiao, Boundary-field equation methods for a class of nonlinear problems, Pitman Research Notes in Mathematics Series, vol. 331, Longman, Harlow, 1995. MR 1379331
- 14. G.N. Gatica, G.C. Hsiao, F.-J. Sayas. Relaxing the hypotheses on Bielak-MacCamy's BEM-FEM coupling. Submitted.
- 15. G.N. Gatica, N. Heuer, F.-J. Sayas. A direct coupling of local discontinuous Galerkin and boundary element methods. Math. Comput. 79 (2010), 1369-1394.
- 16. Gabriel N. Gatica and Francisco-Javier Sayas, An a priori error analysis for the coupling of local discontinuous Galerkin and boundary element methods, Math. Comp. 75 (2006), no. 256, 1675–1696. MR 2240630, https://doi.org/10.1090/S0025-5718-06-01864-3
- 17. Vivette Girault and Pierre-Arnaud Raviart, Finite element methods for Navier-Stokes equations, Springer Series in Computational Mathematics, vol. 5, Springer-Verlag, Berlin, 1986. Theory and algorithms. MR 851383
- 18. Claes Johnson and J.-Claude Nédélec, On the coupling of boundary integral and finite element methods, Math. Comp. 35 (1980), no. 152, 1063–1079. MR 583487, https://doi.org/10.1090/S0025-5718-1980-0583487-9
- 19. Hou De Han, A new class of variational formulations for the coupling of finite and boundary element methods, J. Comput. Math. 8 (1990), no. 3, 223–232. MR 1299224
- 20. Stefan Hildebrandt and Ernst Wienholtz, Constructive proofs of representation theorems in separable Hilbert space, Comm. Pure Appl. Math. 17 (1964), 369–373. MR 166608, https://doi.org/10.1002/cpa.3160170309
- 21. Rainer Kress, Linear integral equations, 2nd ed., Applied Mathematical Sciences, vol. 82, Springer-Verlag, New York, 1999. MR 1723850
- 22. Antonio R. Laliena and Francisco-Javier Sayas, Theoretical aspects of the application of convolution quadrature to scattering of acoustic waves, Numer. Math. 112 (2009), no. 4, 637–678. MR 2507621, https://doi.org/10.1007/s00211-009-0220-z
- 23. William McLean, Strongly elliptic systems and boundary integral equations, Cambridge University Press, Cambridge, 2000. MR 1742312
- 24. Salim Meddahi, An optimal iterative process for the Johnson-Nedelec method of coupling boundary and finite elements, SIAM J. Numer. Anal. 35 (1998), no. 4, 1393–1415. MR 1620160, https://doi.org/10.1137/S0036142996300762
- 25. Salim Meddahi, Javier Valdés, Omar Menéndez, and Pablo Pérez, On the coupling of boundary integral and mixed finite element methods, J. Comput. Appl. Math. 69 (1996), no. 1, 113–124. MR 1391614, https://doi.org/10.1016/0377-0427(95)00023-2
- 26. Jean-Claude Nédélec, Acoustic and electromagnetic equations, Applied Mathematical Sciences, vol. 144, Springer-Verlag, New York, 2001. Integral representations for harmonic problems. MR 1822275
- 27. Francisco-Javier Sayas, The validity of Johnson-Nédélec’s BEM-FEM coupling on polygonal interfaces, SIAM J. Numer. Anal. 47 (2009), no. 5, 3451–3463. MR 2551202, https://doi.org/10.1137/08072334X
- 28. A. Sequeira, The coupling of boundary integral and finite element methods for the bidimensional exterior steady Stokes problem, Math. Methods Appl. Sci. 5 (1983), no. 3, 356–375. MR 716661, https://doi.org/10.1002/mma.1670050124
- 29. O. C. Zienkiewicz, D. W. Kelly, and P. Bettess, Marriage à la mode—the best of both worlds (finite elements and boundary integrals), Energy methods in finite element analysis, Wiley, Chichester, 1979, pp. 81–107. MR 537001
Retrieve articles in Mathematics of Computation with MSC (2010): 65N30
Retrieve articles in all journals with MSC (2010): 65N30
Additional Information
Salim Meddahi
Affiliation:
Departamento de Matemáticas, Universidad de Oviedo, Calvo Sotelo s/n, 33007 Oviedo, Spain
Email:
salim@uniovi.es
Francisco-Javier Sayas
Affiliation:
Departamento de Matemática Aplicada, CPS, Universidad de Zaragoza, 50018 Zaragoza, Spain and School of Mathematics, University of Minnesota, Minneapolis, Minnesota 55455
Email:
sayas002@umn.edu
Virginia Selgás
Affiliation:
Departamento de Matemáticas, Universidad de A Coruña, Facultad de Informática, Campus de Elviña s/n, 15071 A Coruña, Spain
Email:
vselgas@udc.es
DOI:
https://doi.org/10.1090/S0025-5718-2010-02401-9
Keywords:
Mixed FEM,
BEM–FEM coupling,
Lipschitz domains
Received by editor(s):
May 13, 2009
Received by editor(s) in revised form:
September 8, 2009
Published electronically:
August 17, 2010
Additional Notes:
The first author was partially supported by the Spanish MEC Project MTM2007-65088
The second author was partially supported by Spanish MEC Project MTM2007–63204 and Gobierno de Aragón (Grupo Consolidado PDIE)
The third author was partially supported the Spanish MEC project MTM2007-67596-C02-01 and Xunta de Galicia (PGIDIT07PXIB105257PR)
Article copyright:
© Copyright 2010
American Mathematical Society
The copyright for this article reverts to public domain 28 years after publication.